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Performance of digital linear and nonlinear correlation receivers is studied in a multi-user

environment. There are assumed to be two types of sources interfering with data transmission:

multiple-access interference, and additive channel noise, which is attributed to impulsive noise

sources in the environment. The contribution of multiple-access interference is examined by consid-

ering K users transmitting simultaneously over a linear channel using the binary PSK direct-sequence

SSMA technique. Alternatively, the effects of the non-Gaussian impulsive channel in such a system

are studied by modeling the samples of noise after front-end filtering. The performance of hard-

limiting correlation receivers is compared with that of conventional linear correlation receivers in

4Q such channels by exact computation of the average bit error probabilities of these two systems. It is

seen that hard-limiting correlation receivers can offer substantial improvement over the conventional

linear correlator when the additive non-Gaussian channel noise exhibits impulsive behavior. Due to

computational complexity, the exact analysis is limited here to systems utilizing short spreading

sequences. Computationally simple methods are proposed for approximating the average error proba-

bility of the linear and hard-limiting correlation receivers when the length of the signature sequences

is large. Furthermore, for linear and nonlinear correlation receivers some asymptotic results are

obtained for the case of infinitely long sequences. Finally, to broaden the suboptimum DS/SSMA

receiver analysis the performance of the soft-limiting correlation receiver is studied in this impulsive

and multi-user environment.
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CHAPTER 1

U INTRODUCTION

The objective of this thesis is to analyze the performance of asynchronous binary PSK direct-

sequence spread-spectrum multiple-access (DS/SSMA) communications over an additive impulsive

noise channel. In recent years, there have been a number of studies of such communication systems

with the additive white Gaussian assumption for channel noise. In particular, many researchers have

devoted their efforts to finding efficient methods of obtaining approximations and bounds for the

average bit-error-probability of the conventional correlation receiver within this model [ 11-121, [26-

27], and [43-44]. Pursley [26] developed an approximation for the average error probability based on

the average signal-to-noise ratio. Using moment-space ideas, Yao [44] developed upper and lower

bounds on the error probability. Later, Wu and Neuhoff [43] used series expansions and Gauss qua-

drature rules to obtain estimates for the performance of the conventional linear correlation receiver.

Recent contributions to this problem include the methods of approximations given by Geraniotis and

Pursley in [III and [1 2], which are based on series expansions and the integration of the characteristic

function, respectively. Each of these methods has its advantages and disadvantages, and the choice of

method for a given application ultimately depends on the system parameters and required accuracy.

Taken collectively, a number of efficient techniques are available for evaluating the performance of

the linear correlation receiver in additive white Gaussian noise in the DS/SSMA environment.

Among the many other contributions to the performance analysis of DS/SSMA communications are

the studies of Anderson and Wintz and others ( see [51 ) who have analyzed DS/SSMA systems with

a hard limiter in the structure of the receiver, and of Verdu ( [411 and [42] ) who has considered an

optimum detection algorithm that yields a minimum error probability DS/SSMA receiver.

One common assumption among the contributions referenced above is that of additive white

Gaussian noise. Although ihis assumption is quite appropriate for many applications, it is well-

known that many noise environments arising in practice are poorly modeled by Gaussian statistics.

V
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In particular, man-made electromagnetic interference ( or noise ), and a great deal of natural interfer-

ence as well, is basically "impulsive" in nature ; i.e. , it has a highly structured form, characterized by

significant probabilities of large interference levels. This is in contrast to the more "entropic" Gaus-

sian noise processes inherent in transmitting and receiving elements. This impulsive or structured

character of the interference can significantly degrade the performance of conventional ( linear)

demodulation systems, which are designed to operate most effectively against the commonly

assumed Gaussian background noise processes. However, by proper system design, this noise struc-

ture can often be exploited to yield better performance than would be obtained in the Gaussian case.

There have been various efforts over the past two decades in the area of signal detection in impulsive

noise, primarily within the context of single-user channels [3], [7-101, [13], [18-23], [36-38], and

[40]. Most of these studies are concerned with the problem of detecting the presence of a weak signal

in a noisy environment [3], [7], [14], [18], [21-23], [36-38], and [40], and they illustrate that models

for the first-and second-order probability distributions of the noise are usually necessary in order to j
achieve good performance. Since optimum systems for detection in impulsive channels are usually

nonlinear, the analysis of such problems is often significantly more difficult than in the conventional

Gaussian case.3

Even though the two research topics, multi-user communications and data transmission in

impulsive noise, have been explored thoroughly, the problem of multiple-access communication in

the presence of impulsive noise has not been given much attention ( see [8-10] ). From the previous ZI

work on impulsive channels, one would expect that in multiple-access communication systems

operating in impulsive environments, replacing the Gaussian assumption with a more accurate statis-

tical model for the noise and then implementing receivers that take into account the characteristics of -,
'-- ,

that noise would result in better performance than that achieved by the usual linear correlator. How-

ever, there is the additional factor of performance against the multiple-access interference which must

be considered here, and one might expect that the use of a nonlinear receiver would result in degrada-

tion in this aspect of performance. Thus, the overall effect of impulsive and multi-user interferences
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on linear and nonlinear receivers is unclear.

The purpose of this thesis is to study the effect of the deviations from the Gaussian channel

noise assumption in a multi-user environment. In particular, we consider the adaptation of the vari-

ous methods of performance analysis that have been proposed for either of these problems to the

analysis of the combined problem. In this study, the impulsive channel assumption is carried through

by modeling the samples of noise after front-end filtering ( see also [9-10] ). These samples are

modeled as independent, identically distributed random variables with first-order probability distribu-

tion of various types used to model impulsive noises. The multiple-access capability in the system is

achieved by the direct-sequence technique in which the spectrum of the data signal is spread with an

assigned "spreading sequence" ( see [28-29] and [31-34] ). We analyze the performance of the linear

and nonlinear DS/SSMA receivers in the described environment with average probability of bit error

being the chosen measure of performance.

Our study shows that the linear correlation receiver does not perform as well as the Gaussian

model predicts when the non-Gaussia, noise has an impulsive nature, even when the signal-to-noise

ratio is held constant. For these non-Gaussian impulsive channels, hard-limiting correlation receivers

are also examined and are seen to perform with lower error probability than the corresponding linear

correlation receiver. However, as one would expect, the linear receiver performs better than the

hard-limiting correlation receiver when the channel noise is less structured ( e.g., the channel noise is

nearly Gaussian ). In the hard-limiting correlation receiver example, as the signal-to-noise ratio

increases, the hard-limiter apparently is not as effective in separating the two users as the linear corre-

lation receiver is. However, this is outweighed by the improvement against the impulsive noise as

long as the channel noise is significant. Alternatively, the soft-limiting correlation receiver, which is

expected to perform reasonably well against both impulsive channel noise and and multiple-access

interference noise, is studied briefly. Finally, nonlinear correlation receivers are considered in a gen-

eral context and their asymptotic performances are analyzed. It is shown that, asymptotically in the

length of the spreading sequences and within some regularity on the nonlinear element, the nonlinear
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correlation receiver can perform with single-user error probability in a multi-user environment if the

spreading sequences are asymptotically ideal. As is expected, this study involves evaluating

numerous computationally cumbersome expressions. Most of the effort is thus concerned with

finding efficient methods for either evaluating these expressions exactly or approximating them.

The organization of this thesis is as follows. Chapter 2 covers some preliminary results con-

cerning the direct-sequence spread-spectrum multiple-access ( DS/SSMA ) signaling scheme and the

model for the impulsive channel. Chapter 3 includes an overview of some results on the performance

of linear and nonlinear correlation receivers in the single-user case. Chapters 4 and 5 are devoted to

the exact analysis of the performance of linear and hard-limiing correlation receivers respectively, in

the impulsive multi-user environment. Approximations for the error probability of these receivers are

developed in Chapters 6 and 7 for systems using long spreading sequences. To gain more insight into

the impulsive multi-user problem, in Chapter 8, an asymptotic analysis is carried out for both linear

and nonlinear receivers, where asymptotics are taken as the spreading sequence lengths increase

without bound. Finally, in Chapter 9, soft-limiting correlation receivers as an alternative for the

hard-limiter are considered.

*8*
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CHAPTER 2

PREUMIN ARIES

In this chapter, we give a brief descripton of b jSMA signals and state some properties of

this multiple-access technique. Then, a method is uggested for carrying out an impulsive channel

assumption in this environment. In the process, we intrduce some classes of first-order probability

distribution functions that an widely used in modeling channel noise sources. Among these non-

Gaussian channel models, the e-mixture of two Gaussian distributions and the Laplacian noise

models are the most interesting in the context under study here, and thus we will concentrate pri-

marily on these models. Three alternative models, the Middleton Class A, the generalized Gaussian,

and the Cauchy noise, are introduced in Appendix A.

2.1. General DS/SSMA System Model

The model of the asynchronous binary PSK direct-sequence SSMA system considered here

allows K users to share a channel. The signal representing the ki user's binary information sequence,

bk(t), is a sequence of unit amplitude, positive and negative, rectangular pulses of duration T that can

%7? be written as
*"p.

bk(t)= f b()PT(t-mT), k=l,2,...,K, (2.1)

where bm() e {-1, + 1} is the m h information symbol of the kh user ( the vector of information sym-

bols of the kh user is denoted by b(k)) , and PT() is the unit rectangular pulse of duration T defined

as i
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) 1, 05t<T, (2.2)Pt--0, otherwise.

The data signal is modulated onto a phase-coded carrier, and the resulting transmitted signal for the

k user is ( see [26] and [27])

Sk(t)= 2 kak(t)bk(t)COS(O)t+Ok), k=l,2,...,K, (2.3)

where ick is the power utilized by the k h user, o) is the carrier frequency, and the phase angles

0k, 1 < k 5 K, are not identical since the transmitters used in such systems are usually not phase syn-

chronous. In (2.3), ak( t) is the code waveform generated by the spreading sequence assigned to the

1h user. This spectrum-spreading signal can be written as

ak(t)= aj(k)PT.(t-jTc), k=l,2,....K, (2.4)

where aj(k)e{-l,+lI and also aj(k--aj for all j and k and for some integer N. We are also assuming

that N is the least period of the sequences. The quantity T, is the chip length, and we assume that

T=NT c so that there is one code period a&), a?',... , a#2), per data symbol. For each signal, st(t),

transmitted by the kth user there is an associated delay Ck for a given receiver. This time delay

accounts for the propagation delay and the lack of time synchronism between transmitters. The

actual received signal for a given receiver in this model for an additive, possibly impulsive, channel is

given by

K
r(t) = n(t) + Y . 2P, bk(t--Tk) ak(t-k) COS (0cat + *k), (2.5)

k-I

. ... ..
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where n(t) represents the channel noise, Pk is the k0 signal's received power, and where

= Ok - wjk, k= I ,...,K ( see Figure 2.1).

Without any loss of generality, the linear and nonlinear correlation receivers studied here are

assumed to be matched to the first of the K signals in the DS/SSMA system; hence, only relative time

delays and phase angles need to be considered. Therefore, we assume 01 =0 and T, = 0 in the

analysis of the receiver synchronized to the first user's signal. (An interesting problem not con-

sidered in this thesis is the effect of impulsive noise on phase-locking and timing acquisition in

DS/SSMA systems.) Furthermore, there is no loss of generality in assuming

dOke [0,2c) and rk= [0,T), 2<k<K, since we are concerned only with time delays modulo T and

phase shifts modulo 2n.

In DS/SSMA correlation receivers the output of the correlator is sampled every Tc seconds.

These samples are then passed through a memoryless nonlinearity. In these nonlinear correlation

receivers, the decision on the parity of a data bit is based on the sum of N samples corresponding to

that bit taken at the output of the nonlinear element (see Figure 2.2). The test statistic is thus written

as

N1 N-1
,. -- aj)g (Zj), (2.6)
j-0 j-0

where g (.) is the memoryless nonlinearity (i.e., g: R-R) and where Zj and 2j(') denote the input and

output of the nonlinearity, respectively, at the j'h sampling instant. The additive noise in the channel

is assumed to have a symmetric probability distribution and the average probability of error is of

interest: thus, it is natural to consider only nonlinearities that are odd-symmetric around the origin. In

this general setup and assuming that Pr(b ') =-1) = Pr (b~1 ) = +1) = 1/2, the average bit-error proba-

bility using the statistic of (2.6) can be be written as
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"2 QK(t)COS(WCt±OK)~t

Figure 2. 1. Binary direct-sequence SSMA communication system model.
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,,YN- =--pl y> 0 1 bm, ) =- -1 pr [Y< 0i b(1)= +I (2.7)

We will primarily be interested in the two particular cases g(x) = x , corresponding to the linear

correlation receiver, and g(x) = sgn(x), 1 corresponding to the hard-limiting correlation receiver.

The reasons for choosing these receivers ar the following. For AWGN channels, the linear correla-

tion receiver provides a sufficient statistic for the single-user case, K - 1. Moreover, since linear

correlation receivers are relatively simple to implement, the vast majority of existing direct-sequence

spread-spectrum systems employ linear correlation receivers even though they may be suboptimal in

a multiple-access environment. Here, we analyze the performance of this linear receiver against

impulsive additive channel noise and multiple-access interference noise. The performance of the

hard-limiting correlation receiver is also analyzed here since the nonlinearity is extremely easy to

implement and in many communication problems it has been very effective against impulsive distur-

bances.

Analysis of the expression for the average error probability given in (2.7) requires some statisti-

cal assumptions on the multiple-access ( MA ) interference as well as a model of the channel noise.

Our statistical assumptions on the MA interference are that the elements b(k) , rk, and k, 2 - k < K are

mutually independent random variables. We assume that b k),- < m < +-, is a sequence of

independent data bits for each k and that Pr (bk) = +1) . Pr (b k) = -1) - 1/2 for each k and m. The

random variables ck and Ok, 2 : k < K are assumed to be uniformly distributed over the sets of their

possible values. We also assume that these variables are independent of the channel noise and of b(l).

Isgn (.) denotes the signum function defined as

sgn(x) =J1 x O
-- x<O.

! 10.!
Maz
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2.2. Impulsive Channel Models

Since communication systems are often interfered with by noises other than the classical white

Gaussian noise, it is necessary to consider other appropriate ( and tractable ) noise models. There-

fore, in this section, we introduce a tractable way of studying non-Gaussian channels for correlation

receivers such as that of Figure 2.2. This method has frequently been used in various communication

system analyses.

Our main assumption concerning the additive, zero mean channel noise n(t) is that samples imj

taken at the chip rate, T, after front-end filtering are independent and identically distributed ( see

(3.1) for an explicit expression for 11j ). This assumption is valid when the noise process is white and

Gaussian. When the noise process is white but not Gaussian, with the usual low-pass filtering the

samples are uncorrelated but not necessarily independent at the appropriate sampling rate. However,

making the independence assumption is still justified in our model in view of the considerable gain in

tractability this assumption yields ( see also [36] ). This allows us to study non-Gaussian impulsive

noise sources by modeling the first-order probability distribution functions of these independent ran-

dom variables. Non-Gaussian modeling thus consists of considering densities that are either heavier-

tailed or lighter-tailed than the Gaussian; however, our interest here is in models for impulsive non-

Gaussian channels, which correspond to longer-tailed distributions.

In our analysis we have selected the first-order distribution of the random variable rj from

classes of density functions with applications in practice. For instance, communication in the low-

frequency (LF) band is characterized by impulsive atmospheric noise and is distinctly non-Gaussian

in nature. The fact that the receivers discussed here implement short-time correlators is advantageous

since LF communication channels have inherently narrow bandwidth. Some of the models for noise

sources that are considered here have been used to describe the first-order probability distribution

function of impulsive noise which is common in the low-frequency band ( see [8-101 ). In addition to

LF communications, the usual Gaussian noise assumption is inadequate in many other %iI
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communication problems. Non-Gaussian impulsive models are necessary for phenomena such as

atmospheric noise where lightning discharges in the vicinity of the receiver cause high amplitude

noise spikes, and in underwater communication problems where the ambient acoustical noises may

include impulses due to ice cracking in arctic regions. In addition to these natural non-Gaussian

noise sources, there are a great variety of man-made impulsive non-Gaussian sources such as automo-

bile ignition, other electronic .evices, and heavy electrically-powered machinery.

The e-mixture (or e-contaminated mixture) is a commonly used and highly tractable empirical

model for impulsive environments. The e-mixture model has been frequently proposed for describing

a noise environment that is nominally Gaussian with an additive impulsive noise component. The

model was first applied to the detection of signals in non-Gaussian impulsive noise and has since

been used in various statistical communication problems. The first-order probability density function

(pdf ) of this noise model has the form

fb(x) = (--E)f 0 (x) + efj(x), (2.8)

where Fe [0,1] and f, and f, are pdf's [40]. The nominal density function f(.) is usually taken to be a

Gaussian density representing background noise. The impulsive (or contaminating) component of the

noise is represented by the density function fl(.) which is usually chosen to be more heavily tailed

than f,(.). In (2.8), fl(.) is commonly taken to be Gaussian with large variance, and this is the model

we will use here. The ratio of the variance of impulsive component to the variance of the nominal

one, defined as y = o / is usually assumed to be on the order of 10 and 100. The parameter e con-

trols the contribution of the impulsive component to the density function. In this thesis, we wvill usu-

ally be interested in the effects of variations in the shape of a distribution on the performance of vari-

ous systems rather than in the effects of simple changes in noise power. Thus, in this model we will
uusually vary the parameters e and ;,2 with the total noise variance, a2 = ( ,-EO~ + E (, held constant.

°-

- p 5 -*,, ,... ...
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Among other useful empirical models for the probability density function of Tj, the Laplacian

probability density function is an example of a moderately heavy-tailed distribution. This model of

impulsive noise channels belongs to a large class of distributions known as the generalized Gaussian

class ( see Appendix A for a complete description of the class). The Laplacian density function is

given by

fn (x)=- e (2.9)

where o2 is the variance.

The E-mixture and Laplacian density functions introduced above yield tractable and reasonably

accurate models for most impulsive noise sources. In this thesis, we will examine the performance of

multi-user communication systems against both e-mixture and Laplacian noise channels.

,~* 17

....

, i.4 o
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CHAPTER 3

SLNGLE-USER ANALYSIS IN IMPULSIVE NOISE

To gain insight into the performance of multi-user receivers in non-Gaussian impulsive noise,

we first consider communications over these impulsive noise channels in the single-user context. In

particular, we evaluate single-user error probabilities of linear and hard-limiting correlation receivers

in e-mixture and Laplacian channels. Appendix B contains the corresponding numerical results for

the non-Gaussian channel examples introduced in Appendix A. Furthermore, in this chapter, we

introduce our asymptotic analysis by considering asymptotics for the single-user problem (K=I). In

the process, we state some well-known signal-detection results.

Recall from Section 2.2 that the non-Gaussian modeling applies to the samples of noise after

front-end filtering. These noise samples can be expressed as ( see Figure 2.2)

11 f' n(t) cos (cjt) dt , j=0, 1,..... N-1 , (3.1)

-4" jT,
4'

where the fl'o, l'.,., l'N-I are assumed to be independent, identically distributed, random variables

with zero means and variances NoTJ4. These statistical conditions would result if the input noise

were white and Gaussian with spectral height No/2. Keeping these second-order conditions constant

allows us to compare the results obtained here with those previously found from the study of the addi-

tive white Gaussian noise channel.

Within these assumptions, we can evaluate the performance in the single-user case of linear and

hard-limiting correlation receivers when the noise samples ri'q's are distributed according to the

examples in Section 2.2. Note that the spreading sequence is irrelevant to the performance in the

single-user case since the noise is symmetric and the spreading sequence consists only of -1 s and

. s. \Ahen K = 1 the average error probability for the conventional linear correlation receiver

. N
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(see Figure 3.1 ) can be computed from the formula in [12] as

= 1 _f(sin u) 02(u) du, (3.2)

where 0 2(u) A= [{ei l] is the characteristic function of the sum of the N independent identically

distributed random variables, and ,1o, 7h .... Tj14. - are given by Tj j= = , 1,2 ... ;N-

where NOl) 4 P1 T is the bit energy of the user. Note that these samples of noise have been normalized

No
to have variances 2NE(1), which gives the formula (3.2).

For the example with e-mixture channel noise, the expression (3.2) can be simplified by first

noting that the characteristic function 0 2(u) is given as

pN

(D2(U) .-- ( l-e)ieN i exp - (3.3)
i=.OL 2

where Pi is defined as i1 / and a is a function of the signal-to-noise ratio and is

I Eba) 1 1/2
defined as x = N J Substituting (3.3) into (3.2) yields the error probability for the linear

correlation receiver in e-mixture noise as

(3.4)

Similarly, for Laplacian channels, the error probability for the linear correlation receiver is com-

puted by first writing an expression for the characteristic function as

Ih.
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+ 2u2 =U2 (3.5)-

where o2 is the variance given as No. The single-user error probability for the Laplacian chan-
2N40~1

nel example is obtained by substituting (3.5) into (3.2).

To demonstrate the single-user performance of linear correlation receivers, Figures 3.2 and 3.3

have been generated for different e-mixture channels and the Laplacian channel. The figures plot

single-user average error probability versus the SNR A 10 log Eb(1) / No ( converted to dB ) for the

linear correlation receiver. In the e-mixture example, the range of values for e and 9 are those used

in [40] and correspond to some practical examples. Comparing these impulsive non-Gaussian chan-

nel examples with the Gaussian one, these curves indicate a degradation in performance for both

models over the entire range of interest of signal-to-noise ratios, with fairly large degradation in some

cases. This is not surprising since the linear correlation receiver is designed to operate on the white

Gaussian noise channel. These figures show that the impulsive character of the channel noise can

undesirably degrade the performance of conventional linear receivers. This is in agreement with what

was expected, and what has been observed in many previous studies. One interesting observation

comes from comparing two curves in Figure 3.3 corresponding to examples with e - 0.01, 9 = 100

and e - 0. 1, 9 = 100. In these examples with a fixed signal-to-noise ratio, increasing the amount of

contaminated noise from e = 0.0 to e - 0. 1 improves the performance of the linear correlator. This

phenomenon occurs because the total noise variance is held constant; thus, with fixed ?, variation in

performance is not monotonic with changes in e. In fact two channels, one with e - 0.0 and the other

with , - 1.0, result in identical error probabilities. Apparently a breakpoint of the error probability

versus £ is near 0.01.

Typically, optimum and locally optimum detectors for non-Gaussian channels are obtained by

inserting appropriate nonlinearities into the structure of the correlator as illustrated in Figure 2.2.

P.

V- 111,1 1vg4 V~ .- ,. .
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Figure 3.2. Single-user error probability for the linear correlation receiver in Gaussian, Laplacian, and
C-mixture channels, N-3 I.
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Figure 3.3. Single-user error probability for the linear correlation receiver in e-mixture channels,
N-3 1.
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Among the many possible nonlinear correlation receivers, the hard-limiting correlator is considered

here ( see Figure 3.4 ). The hard-limiter (sign detector) is extremely easy to implement digitally and

introduces virtually no processing delay since it only checks the signs of the samples. Moreover, in

many communication problems, hard-limiting is known to be effective against impulsive distur-

bances.

In the single-user case, it is straightforward to see that 1/2 ( YN + N) formed by the test statistic

of the hard-limiting receiver is binomially distributed under either bit condition. First we write the

average bit error probability for the hard-limiting correlation receiver as

P, = /2 Y' Pr [YN=mIn I bl=l]+P YN=-m I bl= (3.6)

Since 1/ 2 ( YN + N ) is binomially distributed, we have the following equality

Pr [YN=ml b~S)=-I] = [ N+m)/]p(N+M)/2(lp)(Nm)/, (3.7)

where p = Pr[I'(lIj and where il (l) is a typical zero-mean noise sample with variance --- . For

odd integers N, substituting (3.7) into (3.6), and noting the symmetry of the system the average bit

error probability for the hard-limiting correlation receiver in the single-user case is written as

tN

P 1 NrN] p) ' (3.8)
j-N+I

2

Figures 3.5 and 3.6 are generated to show that hard-limiting offers substantial improvement over the

linear correlation receiver for the impulsive noise examples used above over the interesting range of IiV .[.% ,'p*
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Figure 3.5. Single-user error probability for the hard-limiting correlation receiver in Gaussian. Lapla-
cian, and e-mixture channels, N-31.
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Figure 3.6. Single-user error probability for the hard-limiting correlation receiver ia 8-mixture noise
channels, N=3 1.
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signal-to-noise ratios of interest. The figures plot single-user average error probability of the hard-

limiting correlation receiver versus the SNR for these noise models. In Figure 3.7 the single-user

error probability of the linear and hard-limiter correlation receiver is drawn versus SNR for the -

mixture example with .= 0.1 and 72 = 100. This is a case in which the linear correlation receiver suf-

fered large degradation in performance compared to the Gaussian channel case. The error probabili-

ties for the Gaussian examples are also included in the figure for comparison.

The performance of linear and hard-limiting correlation receivers in impulsive noise within the

single-user context can be computed via (3.2), (3.4), and (3.8). Succeeding chapters of the thesis are

devoted to analyzing the performance of these receivers in the presence of both impulsive and multi-

user noises.

We now introduce an asymptotic analysis for the single-user communication problem in which

we investigate the behavior of direct-sequence correlation systems when the signature-sequence

length used per data bit becomes infinitely large. We keep the bit interval and the signal and noise

energies per bit constant. In the limit, of course, these conditions would usually require infinitely

large channel bandwidth, and at the receiving end, samples would be taken infinitely fast. Also note

that in allowing, N-++-, one must require the carrier frequence a to increase without bound as well.

Although these conditions are not realistic, they do provide information about the limiting behavior

of P, that could be useful in cases when N is very large but still finite. The multi-user situation will

be treated in a later chapter.

We begin the analysis with the usual interpretation of the binary information extraction as an

hypothesis testing problem. When there is only one user transmitting, deciding on the parity of a

given data bit is a choice between the two hypotheses

Jim Jill- w . " ~ 4 :""""''' , - """ ,. ,,,4 ' .. " ,- , '''""""
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Ho Vj = lj - PNN-7

j =0,I,2,..., N-1, (3.9)

H1 :vj=Yjj+ -PT

where vii = FNi'j. Notice that in (3.9), vj A ,r'Zj and it means the actual received signal after the

front-end filter has been multiplied by -F" to expand data which otherwise were clustered around the

origin. This scaling does not change the problem in any fundamental way; however, the reason for

this will become clear in a moment. In (3.9) the Yj's that are distributed according to examples (2.7),
or (2.8) for all 05j:! N-l have zero means and variances P2 A NOT

or-=- independently of N. With this

N-I

view of the problem, the test statistic based on sequence length N is YN - g(vj) where, for exam-
i-a

Ale, g(x) equals x for the linear correlation receiver and g(x) equals sgn(x) for the hard-limiting corre-

lation receiver. The scaling of the data by '" allows us to analyze a fixed nonlinearity g as N

changes. In other words, with T, Eb(l), and No fixed, the common variance of the original noise sam-

pies Tj'j decreases as I/N. In order to consider the asymptotic properties of a fixed nonlinearity, we

remove this decrease by scaling il'j to jjj.

Detection efficacy is a measure of asymptotic detection performance, which for the above prob-

lem is defined as (see [7], and [21-24])

DE IYNIH,] 12

VN 0ar[NIHQN 
(3.10)

_ ~ N= N Vat r Y., 1HO

- • q • ,
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IrP,

where 0N P T. Here E [YN I H1] is the expected value of YN, given that the hypothesis H,

is true and Var [ YN H0 I is the variance of YN, given that the hypothesis H0 is true. One

significance of detection efficacy is that, within mild regularities on the nonlinearity g and the noise

distribution, it relates to the asymptotic error probability via

lim P=Q P (3.11)
N-+ + a

.u

For the particular nonlinearities of interest here, (3.11) is valid for all of the impulsive noise models

under consideration. The efficacies are v = for the linear correlator and v = 4f (0) for the

N0T

hard-limiting correlation receiver, where f,(.) is the probability density function of the scaled sam-

pled noise.

Recall that in this asymptotic analysis the energy per data bit for the user Eb(1), the length of the

data period T, the noise power, and hence the signal-to-noise ratio are kept constant. Table 3.1 con-

tains the asymptotic average bit-error probabilities for the linear correlator and the hard-limiting

correlation receiver in the single-user case with an SNR of 8 dB. Figures 3.8 and 3.9 are drawn to

exhibit the asymptotic performance of these receivers over the interesting range of signal-to-noise

ratios in non-Gaussian impulsive noise. These results indicate considerable improvement in the

asymptotic performance by using hard-limiting correlation receivers in place of linear correlators for

impulsive noise channels for the entire range of interest of signal-to-noise ratios. Note that this .1

improvement is generally more pronounced than in the N 31 case treated above, particularly for the

Laplacian case.

i
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TABLE 3.1. ASYMPTOTIC ERROR PROBABILITY FOR LINEAR AND
HARD-LIMITING CORRELATION RECEIVERS IN GAUSSIAN, LAPLA-
CIAN, AND c-MIXTURE CHANNELS, SNR=8 dB.

DISTRIBUTIONS LINEAR HARD-LIMITER

GAUSSIAN 1.91 x 10 4  2.30 x 10- 3

LAPLACIAN 1.91 x 10 4  2.53 x 10 -7

e-MIXTURE

S=0.1 =10 1.91 x 10- 4  1.36x 10'

e --0.01 f =100 1.91 x 10 4  3.71 x 105

e =0.1 y2 =100 1.91 x 10-.4  8.29 x 10-i'

'A

TO4d

.p.?



29

* ----H ard -L im iter (G aussia n)_ 0 -2 - -- L in e a r

....... Hard-Limiter
N (Laplacian)

10-4-

00

0

00

0-

e%
* 0

10 -8 _-

: \.

6j

10-10

I0 °
I "*.I

2 6 8 10 12 14
SNR FP-8852

Figure 3.8. Asymptotic error probability for the linear correlation receiver, and hard-limiting correla-
ton receiver in Gaussian and Laplacian channels.
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CHAPTER 4

N ANALYSIS OF LINEAR CORRELATION RECEIVERS

IN IMPULSIVE AND MULTI-USER NOISES

In this chapter, we study the performance of linear receivers in the direct-sequence multi-user

environment over impulsive-noise channels. Appendix B contains the corresponding results for the

non-Gaussian channel examples introduced in Appendix A. Here, in particular, we wish to study

linear digital correlation receivers (see Figure 3.1) matched to the first of K users. In such receivers,

the output of the chip-matched filter is sampled every T, seconds. The test statistic is the sum of N of

these samples,

N-1YN- Zj ( ),  (4.1)
j-o

where Zj(1) is ai(1) times the sampled output of the front-end filter. When the input signal is the noisy

multi- user signal of (2.5), 41) is given by

Z1(I) T 'j(1) + cosqk f aj) ak(t--k) bk(t--Tk) dt + T b ' ) ,
kff2 2 J7.T2

j=0,1.....N-l,(4.2)

where double-frequency terms have been ignored, and Tl'j ( ), is defined as

(j+IDT.

1 f n(t) aj(') cos)t dt, j=,. N-1. (4.3)
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The noise components of the sampled signals, 1,6I),... , are assumed to be independent and

NoT0
identically distributed random variables with zero means and variances N . It is easy to see that4*

YN given in (4.1) is not a sufficient statistic for deciding all symbols ( for K > 1 ) even for the Gaus-

sian case. For this problem, a more complex receiver involving sequence detection may provide a

statistic which permits a more nearly optimal decision (see, e.g., [41-42] ). However, correlation

receivers perform acceptably and are very simple to implement, and thus they have been used in most

direct-sequence SSMA systems, even though they am suboptimal in a multiple-access environment.

To recognize the contribution of the non-Gaussian noise and the interference from other users in

T
the bit error probability, and since for the linear correlator we can write YN = f r(t) al(t) cosot dt, the

0

average error probability of the linear correlation receiver is given by (see [12] for details)

- 2 2 r 1571,11<111(4.4)

where TI, = 7 5 , and where the normalized interference term 11 is given by

K cos4)k

I( _, 7_ T ) =b ) RkI(TI) + be) I~k,.(XZ) (4.5)

where Ek,j, is defined as the ratio of the powers ,for k - 2, 3, .... K. The two terms RkI and kk,.1
4 ;p 1

appearing in (4.5) are the continuous-time partial cross-correlation functions between the kth and first

code waveforms, defined by ( see also [271)

V. .', . i . .d.. . ., . . '. o . . ,,-.:,. . t .. -. . ,',20 .,. - .'. ' ',',. ' .-.- ' ,
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R,()fak(t-'t)al(t)dt,(46*0
and

T
RL()=fak(t--C)al(t)dt, (4.7)

for 0:5r:5T. For values of T in the range 0: T,5c5( )c5T the two cross-correlation

functions Rk.1, and Rkk., can be written as

Rk,,)= Ckl(m-N)Tc + [Cr(+-)4~mN]-T) (4.8)

and

fll(?T) = Ck1(M)TC + [Ckl(M+1)-CkIl(M)]Xt-MTC), (4.9)

where Ck.1 is the discrete aperiodic cross-correlation function for the sequences a~k and a(' defined

by

N-I-rn5m: -

Clo(m) = I~ (I) -N5 m<0 .(4.10)

0 ImI 2Nj

AL
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Recalling the statistical assumptions on the asynchronous DS/SSMA system, we note that I has

a symmetric distribution, and since T1s and I, are assumed to be independent, the average error proba-

bility can be written as

2 u- 1 (sin u) 0 2 (u) du + I-l'u - l (sin u) 02 (u) [1-4 1 (u)] du, (4.11)
0 0

where 0 2 (u) 4. E { e = [E { e'" } ]N as in (3.2) and 0 1(u) A Efe"'li,. Since P. is written con-

veniently in terms of characteristic functions, contributions of the multiple-access ( MA ) interference

and noise are distinguishable. Note that the first two terms of the expression for the multi-user error

probability are identical to the right-hand side of (3.2). The characteristic functions 0 2 (u) are given

in the previous chapter for all noise models under consideration.

With regard to 01 (u) in (4.11), since the K-1 multiple-access interference terms

t.1Ik,l(bk, ' -~ Ok -- {Tb.911 Rk.,(Tit) + beK) Rtk1CrT)}j, 2:5k:5K (4.12)

K

i.e., these form the total multiple-access interference as I, fi Ij(bk, Tk) ) are mutually
k-2

independent, we can write ( see also [12])

K 2x T

< 2(u) = 87rT -T' , f f exp[ iuIk,l(bk , k, k) ]dd, (4.13)k2b-Ltbo 0 0

where Z denotes the sum over all (b01 ), be) with b(k)f{+l ,-1}. The expression in (4.13) can be

written as
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IDM rW I [f(U,M~1e I Ok.1) + fWu4Cm, 1 6.0 (4.14)
k-2 I W PliJ

where

fAu'm'y) f~j f expfiu [y(m+ 1),T + y(m)(Tc--t)]cs rdO(.5

for an arbitrary function y. in (4.14) Ok. and Ok are the periodic and odd cross-correlation functions

for the binary spreading sequences, respectively, and they are defined as (see [27] and [33])

Ok,(M) Ck.1(M) + CM~(M-N), (4.16)

and

6k,1(M) =Ck.1 (M) - Ckl(m-N), (4.17)

for 0:5 m:5 N-i . For the binary PSK system considered here, (4.15) reduces to the following expres-

sion which was obtained in [(12] and [(11]

f(u~m~y) f - cos[ u .(y(m+)+y(m))cos,] sinc[j-u.(y(m+l)-y(m))cos I dO .(.8

Typical average bit error probabilities of the linear correlation receiver for the two-user

(K -2) case with various values of distribution parameters obtained by substituting (4.14) and the

corresponding expression for 0 2 in (4.11) are contained in Table 4. 1. For an example with N - 31 a
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i

TABLE 4.1. AVERAGE ERROR PROBABILITY OF LINEAR CORRELA-
TION RECEIVERS IN THE BINARY PSK DSISSMA SYSTEM ; GAUSSIAN,
LAPLACIAN, AND E-MIXTURE NOISE CHANNELS, SNR-8.0 dB.

DISTRIBUTION K N-31 N=63
1 1.91 x 10 1.91 x 10

GAUSSIAN
2 4.16x 10F4  3.06x10 4

M

1 2.49 x 1V
LAPLACIAN

2 5.45 x 1074c-MIXTURE i
1 4.02 x 10-4 2.93 x 104

0.,02 6.76 x 10"4 4.21 x 10-4  r
1 3.02 x IV-  1.55 x 10-.

0.01,100

2 3.46 x 10- 3  1.76 x 10-3

1 9.47 x 10 5.61 x 10
0.1I,100

2 1.31 x 10 3  7.19 x 104 ,

'..

I.
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spreading sequence ( also known as signature sequence ) of length 31 is assigned to each user

corresponding to top entries of Table A.1(a) of [28]. These are auto-optimal least-sidelobe energy

(AOILSE) phases of maximal-length sequences (m-sequence) of period N. The results presented here

are typical of our findings for a variety of system parameters. For simplicity, the examples are carried

through under the assumption that all users have the same power. All of these results are obtained

with fixed signal-to-noise ratio, thereby showing the effects of the shape of the noise density on per-

formance. For the more interesting example, the e-mixture case, Figure 4.1 is generated to illustrate

the performance for a wide range of values for SNR. Also shown on Figure 4.1 is the performance

obtained in a six-user case Gaussian channel.

The principal conclusion here is that, as expected, the linear receiver does not perform as well

as the Gaussian model predicts when the non-Gaussian noise has an impulsive nature (heavy-tailed

distribution). Also, the effects of the impulsive noise on the two-user system seems to be nearly the ,

same as that on the single-user system. Similar to the single-user case, the multi-user performance of

linear correlation receiver in the e-mixture channel with e - 0.1, 9 = 100 is better than that in the

channel with e = 0.01, . 100. As a final remark on these results, in Figure 4.1 we see that for most

values of SNR the error probability for the linear correlation receiver in one of the E-mixture exam-

pies with two users is nearly as high as that for the Gaussian example with six users. This indicates

that if the Gaussian assumption for a channel is violated in favor of this e-mixture, the resulting

degradation in performance is equivalent to that caused by subscribing four additional users to a

Gaussian channel.

Next we consider the near-far effects on the performance of the linear DS/SSMA correlation

receiver in an impulsive channel. We assume that two users share an e-mixture channel and that the

interfering user has power different than the receiver one ( i.e., I2.j =- I I ). Results for a fixed

signal-to-noise ratio ( of user 1) equal to 8 dB and a value of N=31 are contained in Table 4.2 and

Figure 4.2. The error probabilities indicate smaller degradation in performance due to the impulsive

J*J
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Linear Correlator E=O.O1 Y2 =1OO

K=6 - =.0 Gaussian

10-2

NN%

% .\ \Ia-k

K2
\ I\

K=2
K=1

2 4 6 8 10 12 14

SNR FP-8 681

Figure 4.1. Error probability for the linear DS/SSMA correlation receiver in E-mixture channels,
N-3 1.
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TABLE 4.2. ERROR PROBABILITIES OF LINEAR CORRELATION
RECEIVERS IN THE BINARY PSK DS/SSMA SYSTEM ; GAUSSIAN AND
e-MIX~tJRE CHANNELS, SNR-8.O dB, N-31, K-2, TWO USERS WITH
UNEQUAL POWERS (E2, = P21PI 1 ).

DISTRIBUTION _ e2_ = 0.0d8- e21 = 3.01dB c21= 4.77dB

GAUSSIAN 4.16 x lOr4 7.84 x le~ 1.32 x le~
e-rnixture

e=.,9sO6.76 xiO4 1.08 x 1T 1.63 x 0 3

E=0.oI, f. 10 3A6x iTr3  3.94 x IO3 4.49 x IT3l

e=O., 91001.31 x i 1.79 x le~ 2.39 xi0

_____________ __________ ______________________4

"lk~
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noise component as the other user's power increases when compared to the equal power example. .

This is due to the fact that, as the other user's interference becomes more significant, the channel

noise represents a smaller fraction of the total noise. Consequently, the performance of the linear

correlation receiver in these impulsive channels becomes comparable to the performance of that

receiver in a Gaussian channel under similar conditions.

Summarizing this chapter, we have considered the performance of linear correlation reception

in a typical two-user DS/SSMA system operating in impulsive noise. As expected, we have seen that

performance in this situation can degrade undesirably from that predicted for the Gaussian noise, par-

ticularly when the channel noise is not dominated by the multi-user interference.

Aside from the these findings it should be noted that we experienced a rapid growth in the com-

putational effort required to compute P, for larger N, as one would expect. The problem of approxi- -

mating P6 for large values of N will be discussed in Chapter 6. ,4,.

Y'A

Mt.,
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CHAPTER 5

ANALYSIS OF HARD-LIMITING CORRELATION RECEIVERS

IN IMPULSIVE MULTI-USER CHANNELS

Motivated by the finding of the previous chapters, in this chapter we study the performance of

the hard-limiting correlation receiver under the same conditions as those for which the linear correla-

tion receiver was analyzed. We introduce limiting to diminish the influence of large samples (e.g.,

noise impulses) on the test statistic. In Chapter 3 we showed that, in the single-user environment,

hard-limiting correlation receivers can be used to suppress the effects of non-Gaussian impulsive
.

noise and thus to achieve a lower average probability of error. Here, we analyze the performance of

the hard-limiting correlation receiver in the presence of non-Gaussian impulsive noise and multi-user

interference, and we compare these combined effects with those on the linear correlation receiver. As

noted before, the nonlinear element in the structure of the hard-limiting receiver is extremely easy to

implement digitally and virtually no processing delay is introduced since it only checks the signs of

the samples, Zj's (see Figure 3.4).

The average bit-error probability for the hard-limiting receiver can be derived from the general

,form (2.7). We assume throughout that the number of chips per bit is odd ( this is usually the case as

N is usually 2n-l for some integer n ) and so since sgn (x) E {-l,+l1, the test statistic is an odd

integer, YN E {-N,-N+2,...,-3,-,+1,3...,N}.

It is straightforward to see that the test statistic 1/2 (YN+N) formed by the hard-limiting

receiver is multinomially distributed under either bit condition. From this it follows that the average

Sor probability for the hard-limiting correlation receiver can be written as

'

i9
~*p* Fa~~J' ~ ... *a?.. ~ 4~~ **,F4
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r (N+I)/2 r

+Pr [YN=-2m+1 IbPI)=+214  4 -_- (5

where % = (r2,....., CK ) withcjr=[0,T), k = 2,..., K, 0 =K (2.,Z)With *k0[0,219)

k = 2,..... K, and b = [(0_1 ), b62 ) ) .. ,(blf ), bonO ) I with bi(k)rE{ -1, +1 }, k = 2, ... ,. 

We now consider two methods for computing the average Sor probability (5.1) for the hard-

limiting correlation receiver in multiple-access noise. Results computed from these will then be com-

pared with analogous results for the linear correlation receiver from Chapter 4.

5.1. The Characteristic Function Method

Our first method for computation of P. for the hard-limiting correlator uses properties of the

characteristic functions of discrete random variables. The characteristic function of YN conditioned

on (1, ,b) and bAl) is given by

(u) = [eiuPY, + e'u(l - pj')], (5.2)Sb ),Pl -jlO

where pjb1l) A P0 1 bA),p] and where p, is used to denote the collection of variables-

(_, , b). Note that the probability of a discrete random variable taking an integer value m is given

in terms of its characteristic function as
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2x

Pr( YN = m) = e" YN(u) du; (5.3)

i.e., it is the ml Fourier coefficient of the characteristic function. This expression can be simplified

using some properties of the characteristic function Oy,. First note that 0 y,(u) =-y,(U + x) and

(Dy,(u) =--y,(x-u), because N is assumed to be an odd integer. Now since in (5.1) the summation

is taken over all the odd integers m between 1 and N, we only need to consider odd integers m. Equa-

tion (5.3) can now be simplified as

III

Pr(YN =m) eiUm du+ eium yN(u) du (5.4)PxY f e-) = y@.(u) d

Moreover, for all odd integers m it follows that

It

P [YN = m I b)--1,pl] 2 u I-pdu (5.5)

1Nf I Re ]ew y(uI-A'vI du

Before substituting (5.2) into (5.5), we note the following:

e cum  N(u)f[ cosu(+--) + 2snu u
e N 2pjsinusin(---) ] (5.6)

-i[ sin u(l+-!!) - d2pj sin u cos(I

Iwhere pj ba') with b&l =- I. Substituting (5.6) into (5.5) and after a few strrughttorward

Dj

pr=
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intermediate steps, the expression (5.3) can be written as

d2f J N-l R(u, pj) cos Ni A(u, pj, m) ]du, (5.7)

where

R(u,p) - [1 + 4 p(p-l) sin2 u], (5.8)

and

si n u( + 2p si u cos rn,
A(up, - .n. • (5.9)

cos u(1 + -) + 2p sin u sin um (59N NJ

Similarly, we can write

Pr[Y,= -m I bS1)=+1,p]- flR(u, A) cos [ A(u, , m) ]du (5.10)Pr -mI ~ n ='-l p "0 j,.0 j,,0 ---,-

where i 4__ Pr[( Zj(1) < 0 1 bSI) = +1, pl,]

At this point, for simplicity in the analysis, we assume that relative time delays -r among the

users are fixed. This analysis can be applied to a sufficiently rich set of delays to obtain an approxi-

mation to the average bit-error probability. We write the probabilities Pj and explicitly as functions

of T, via



46

Ir ['b1~ + 1)0, ,< (5.11)

where i() has zero mean and varianceNO

j-u Tc' 
] (5.12)

I*(,) (b, K e) I c < J -- [ B(j,mk) aj1 ajk.i 4e + m jmk) aj' a.) (, (.2
k 2 TC

where 4ek= 1:-MkT0 and Mk = [ITJ, e~k is defined as the ratio of the powers-, k-2,3,...,K, and
P1

the functions B( , -) and B()are defined to account for the possible partial overlap of adjacent

bits; i.e.,

A 1010) 05j:5 mk
B(j,mk)= be)~ mI~+1-j.-N-1

and

A 01~) O5j:Sm-15.3
BO,nk)= Lbe) (5.13)-l
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Substituting (5.7) and (5.10) into (5.1), the average bit-errr probability conditioned on the

delays is written as

I (N Y R(u, pjy)) co[ N- m 1)d~ (5.14)
_____ I)# 2A-N-I 11D

K2K b m-O [j0r j-0

Recall that the 'nj~')'s are i.i.d. with a symmetric density function. Thjus

Pr[ij(') 21 1 - If1')] = Pr['if 1) < -1 + if'1)], and E;b [IJ~, t)]=0.

Now since (5.7) and (5. 10) are functions of Pj) and A) respectively, and with he above properties

we can express P(K) as in (5.14).

In the case that only two users share the channel (K=2), (5.14) can be simplified significantly by

noting that the absolute value of ifP) takes only two forms:

1P -t4E CS 2=122 (5.15)
-1 ~cos. CO02,

where d2 = ~T'/T.. Now defining ji, i=1,2,3,4 as the number of times in N tries that I.() takes one of

the four forms (e.g., if 1) = -46jZc CO 02 (l-2d2)) enables us to simplify' (5.14) as

12 2 4  (N4.IY2 4 15.16
Peo 2(K-2) I f f R(u, p(i))? I cos [F jA(u, p(i),2mr-i) jdu-d0!

X,2 b 0 0 i- rn-I i -ij

where p(i) = Pr[1j)' 2! 1 - IP )1 when Ij(') takes the i~ form i=1,2,3,4. Note that ji , which is a function
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of the data bits of the other user, also depends on the signature sequences of the two users. An

expression for P.(%) similar to (5.16) can be obtained when more than two users share the channel.

However, illustration of the final expression would be somewhat difficult

5.2. The Combinatorial Method

We now derive an alternative expression for the average bit-error probability from the original

definition (5.1) when only two users share the channel. Recall that the objective is to evaluate

Pr[YN = ml for some odd m, where YN is the sum of N random variables Zj(1) E [-1,+1}. First we

rewrite the four probabilities

AP(1) Prf1j) 1 - cos02],

P(2) = Prrljl ) I + 4Ecos,

P(3) = Pr[l,') > 1 - 4E2,1 cos02(1-2d 2)],

and P(4) 4 Pr[iTj( 1) Z: 1 + 4c2,1cosO2(1-2d2)]

which are conditioned on _ and 0. The test statistic YN can take on any odd integral value between

-N and +N. YN equals an odd integer m only if the number of times in N tries ; (' ) comes out non-

negative is exactly (N+m)/2. The probability of each ZP ) being non-negative is equal to P(i) for

some i, i=1,2,3,4, depending on the bits of the other user and the signature sequences. Recalling the

definition forji, i=1,2,3,4 we can write
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N~m -tb-sN~m f23a

where = -'"k' In (5.14) dhe summations are in the ranges

M~ [+m ]

max +m2 -lj2 J 1i, 12n: mn + n4j3

and

max N+m .o<- n(-n iS5mn +m - n4 -n 3j 2).

Now substituting (5.17) into (5. 1), we can write

x

(N.1y2 2PrN2m1Ib0-,t do.(182x Z f Pr[ 5.8

eralized to the case when more than two users share the channel, albeit it is somewhat messy to do so.

As iththefinl smplfictio (516)in ecton .1,theanaytial esut otaied erecanbeNeA

.7M
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5.3. Numerical Results i
The numerical examples presented here are aimed at showing that, for fixed SNR, improvement

in DS/SSMA performance can be obtained by using hard-limiting correlation receivers in place of

linear correlators when the tails of the noise distribution are heavy. Thus, we compute average bit-

error probabilities given a relative time delay between users for impulsive noise sources interfering

with the two-user binary PSK direct-sequence SSMA system considered in the previous chapter.

This analysis is first carried out with fixed signal-to-noise ratio and equal signal power assump-

tion for all the users. With the variance of the random variable ij?) held constant, changes in error

probability are analyzed for different noise distributions. Tables 5.1 and 5.2 contain the average bit-

error probabilities for Gaussian, Laplacian, and e-mixture examples with a typical delay. Results

indicate significant improvement in performance by using hard-limiting correlation receivers in place

of linear correlators for more impulsive noise channels. Moreover, this improvement becomes more

visible as the length of the signature sequences used by the channel subscribers increases. Figures 5.1

and 5.2 support this conclusion over a range of SNR values for the e-mixture example. An interesting

conclusion here is that, unlike the linear correlation receiver, degradation due to the other user is no

longer uniform in the range of signal-to-noise values. Thus, as the SNR increases, the hard-limiter

apparently is not as effective in separating the two users as the linear correlation receiver is. How-

ever, this deficiency is outweighed by the improvement against the impulsive noise as long as the

channel noise is significant ( i.e., the SNR is moderate).

Finally, we consider the near-far effects in the performance of hard-limiting DS/SSMA correla-

tion receivers. In this context, we vary the signal power of the second user with respect to the first

user's power level and then compute the error probability. For Gaussian, Laplacian, and e-mixture

channels, Tables 5.3 and 5.4 are generated for values of E2,1 less than unity and greater than unity,

respectively. Additionally, Figure 5.3 is drawn to illustrate the performance variations over a range

of values for e2,1. Comparing these results with the analogous ones for the linear correlator of
t
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TABLE 5. 1. ERROR PROBABILITIES OF HARD-LIUMNG CORRELA-
TION RECEIVERS IN THE BINARY PSK DSISSMA SYSTEM ; e-MIXTURE
CHANNEL, SNR-8.O dB, TWO USERS WITH EQUAL POWERS AND TYP-
ICAL TIME DELAYS.

e______ K N-31 N-63

1 2.19x 10 2.2Sx ler
0.0,1

________ 2 4.63 x IV 2.51 x le

1 1.59 x le A.7 x10-4
0.1,10

________ 2 9.53 x 10r 2.14 x le

1 3.71 x100 3.71 x 10
0.01,100

_________ 2 3.90 x 10-4 5.77 x 105

1 1.86 x 1012 2.68 x icr 5

0. 1,100
__________ 2 2.59 x 10-6 2.06 x i101o

*Gaussian noise
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I

TABLE 5.2. ERROR PROBABILITY OF THE HARD-LIMIT-
ING CORRELATION RECEIVER IN THE BINARY PSK
DS/SSMA SYSTEM; GAUSSIAN AND LAPLACIAN CHAN-
NELS, SNR - 8.0, TWO USERS WITH EQUAL POWERS
AND TYPICAL TIME DELAYS.

GAUSSIAN LAPLACIAN

K-1 2.19 x le 1.05 x 1 -
N-3 1

K-2 4.63 x 10 8.67 x 10-

K-1 2.25 x le~ 3.57 x le~
N-63

K-2 2.51 x le 1.02 x 10-

K-1 2.27 x 0O 1.32 x l0
N-127

________ K-2 2.77 x i10l 5.41x 10

I
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Hard-Limiting EO Gusa
Correlator- 0 O Gusa

0.1 yZ100

0 . Y2=10

'K4

2 46 8 10 12 14
SNR

FP-8682

Figure 5. 1. Error probability of the hard-limiting correlation receiver in e-mixture channels, N=3 1,
two users with equal power and typical time delays.
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Linear Correlation
Receiver

-Hard-Limiting

10-2- Correlation Receiver
e 0.l1-Y y100

10 V
KK=2

K=I

I I I I2 4 6 8 10121
FP-8683

Figure 5.2. Error probability of linear and hard-limiting correlation receives in e-mixture channels,
N-3 1, two users with equal power arnd typical time delays.
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TABLE 5.3. ERROR PROBABILITY OF HARD-LIMITING CORRELATION
RECEIVERS IN THE BINARY PSK DS/SSMA SYSTEM ; GAUSSIAN AND
IMPULSIVE CHANNELS, SNR=8.0 dB, N-31, K-2, TWO USERS WITH
UNEQUAL POWERS AND TYPICAL TIME DELAYS (e2.1 = P2/P 1).

DISTRIBUTION e_1 =-6.02d8 re.1=-3.01dB ej_ =-1.25d8 =

GAUSSIAN 2.69 x le 3.27 x le- 3.91 x le-  4.63 x 10-

LAPLACIAN 1.77 x le 3.01 x 10-4  5.13 x 10 8.67 x 1O4

E-MIXTU'RE

e=-0.01, -100 7.57 x 10-s  1.40 x 1e 2.41×1 -  3.90 x 1e

=0. I, y-100 2.68x 1i0 ° 1.43 x le 2.74x 107  2.59x le

-

SA
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TABLE 5.4. ERROR PROBABILITY OF HARD-LIMAITING CORRELATION
RECEIVERS IN THE BINARY PSK DSISSMA SYSTEM ; GAUSSIAN AND
IMPULSIVE CHANNELS, SNR=8.O dB, N-31, K-2, TWO USERS WITH
UNEQUAL POWERS AND TYPICAL TIE DELAYS (E2 ,1 =P21PI al1).

DISTRIBUTION r,,= 0.0d8 _f.= 3.01dB 2_ = 4.77dB

GAUSSIAN 4.63 x iT4 8.30 x ler 1.32 x 10-2

LAPLACIAN 8.67 x 10-4 4.05 x i0r- 9.58 x le~
* E-NIX(TURE

E--O.0i, 9=100o 3.90 x i0rA 1.74 x le- 4.93 x l

e=O.i, 9=100 2.59 x li06 4.21 x i0r4 3.85 x l

MUM-
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Chapter 4 we see that, as the other user's relative power increases, there is a point beyond which the

linear correlator is superior to the hard-limiting correlator. This again is due to the fact that the linear

correlator appears to be more effective than the hard-limiter is in dealing with the MA interference.

So when the MA interference dominates the impulsive interference, the linear correlator is better.

However, this crossover point is higher for more impulsive models and in most cases occurs beyond

the desirable range of error probabilities. Thus, we can conclude that the hard-limiter correlator is

still desirable in a two-user impulsive channel provided the second user is not dominant.

Summarizing this chapter, we have considered the performance of hard-limiting correlation

receiver in a typical two-user DSISSMA system operating in impulsive noise. We have seen that in

most cases, the hard-limiter outperforms the linear correlator, particularly when the MA interference

is dominated by the impulsive channel noise. Similar to the analysis for the linear receiver, we

experienced a rapid growth in the computational effort required to compute P for larger N. The

problem of approximating P, for large values of N will be discussed in Chapter 7.

I
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CHAPTER 6

LINEAR CORRELATION RECEIVERS IN IMPULSIVE CHANNELS:

APPROXIMATIONS

In earlier chapters, expressions for average bit-error probability were obtained for both linear

and hard-limiting correlation receivers operating in the presence of multi-user noise and non-

Gaussian impulsive noise. The computational effort in finding P. grows rapidly as N, the number of

chips per data bit, and K, the number of users sharing the channel, increase. In fact, in our previous

analysis we have been limited by computational considerations to considering exclusively the case

K=2. In this chapter, we consider further the performance of linear correlation receivers in the

prescribed environment. Maintaining the same system model, we introduce an approximation, an

upper bound and a lower bound for the average probability of error that allow for easier computation

with large N. The approximation to the performance of the linear correlation receiver is based on a

Taylor series expansion of the average error probability. Similar ideas have been used in [11,12] and

[43]. We will also show that this approximation is exact asymptotically in N. Furthermore, we con-

sider the moment-space bounding technique proposed in [44-45], and [17] to provide upper and lower

bounds on the average probability of error in this case.

6.1. Taylor Series Approximation

In this section, we obtain an approximation for the error probability of the linear correlation

receiver by truncating a Taylor series expansion. It is easy to show that with the test statistic for the

linear correlator, the average bit-error probability for the receiver can be written as (see also [12])
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TN-

where 'N(a) -Pr [ 1 1l"i >a] with zero mean samples of noise '1"j normalized to have variance N
j-.

The multiple-access interference in (6. 1) is defined as

K CO5~kriIf( , , VE T ,l - 0 ) Rk,,(Irk + be) lkk,,(,k) (6.2)

k-2T tI

where Ek,1 the ratio of the powers .k, k = 2,3,...,K, and the continuous-time partial cross-correlation
P1

functions Rk,1 and Rk, are given in (4.8) and (4.9), respectively. Following [11,12] and [43] we I
expand the function TN in (6.1) in Taylor series about a function of the single-user SNR,

a= -Ro . Then if we take the expectation of each term ( assuming this interchange is permissi-

ble ) we will have the following:

= 'N(a) + j a3m EfI L2m V ) (aX) ,(6.3)

where 'V ) is the m th derivative of TFN. Note that, if TFN is analytic the series in (6.3) converges

uniformly in a because the interference is bounded. In (6.3) the first term of the series is the error

probability in the absence of multiple-access noise. The rest of the series is a function of signal-to-

noise ratio, the shape of the noise distribution. and the even moments of the multiple-access noise.
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The moments E [I 12 can be evaluated by means of a recursion (see [11, 121 and [43]) We

3 first define the random variables

q.1- T IRif$(q) kqiqj , q = 2A..., K (6.4)

Let 4q1 be the partial sum of the interference of users 2, 3, . .. , and q. This quantity can be written

as

q
'qi ,1 W1 COS k =Ilq-1 +Wq1 COS Oq , q =3A4.. XK (6.5)

k-2

With IZ = W2,1 COS 02. Note that 11 = Igj, and since Oq and Wq.1 are independent we can write

q.1 I 7,j 2m L2(n1-i)J 27(- E[ 12',1E q )1 q = 3,... ,K.(6)

(Notice that due to symmetry of the multiple-access interference, the odd moments of 1 are zero.)

For computing the moments of the multiple-access interference we must first evaluate E [ Wq' I'. To

compute these moments, we use a modified version of the characteristic function of 1,( ~ 0 , b

given in (4.14). This yields

E [ W2 ?1 ~ fm(fl, 4r=q q)+ fm(I1, Ir~jdj (6.7)m

where
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fm(n, y) A N N (6.8)
(2m+l) [ y(n+l) - y(n)

N

for y(n) * y(n+l) and fm(n, y) A [ N if y(n) - y(n+l).

Referring to expression (6.3), our proposition is that if the signature sequences are chosen

correctly, then when N is large the effect of higher degree moments of 11b, , ) in (6.3) becomes

negligible (note that in most cases we can safely assume that I1 is bounded from above by 1). There-

fore, only a few terms of the infinite series should be needed to obtain a small truncation error for P.,

and thus in order to evaluate the estimate for P, we primarily need to study the distribution function

'FIN and its lower-order derivatives.

Recall that our first-order non-Gaussian channel model describes the noise samples il'j. Let us

start with the Gaussian distribution; of course, the sum of N independent zero mean Gaussian random

I
variables each with variance -- is a Gaussian random variable with zero mean and unit variance.

That is,

N(A gf Q o I" e-X2
= f - dx (6.9)

We can write the nth derivative of Q in terms of the Hermite polynominals Hm(x) which are defined

by ( see [251 ) Ho(x) = 1,H1(x) = 2x, and

Hm+(x) = 2x Hn(x) - 2m Hra.(x); m,1. (6.10)

The resulting expression for P, is

- r -
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m ~a +o E 2 .1
Pe-Q~a + rx, 2m7 H2=t(, )4_~ m 1

The convergence of this infinite series and an upper bound on the truncation error that results when

the series is approximated by the sum of a finite number of terms are considered in [12], [43], and

also [I1].

For the e-mixture example, recall from Chapter 3 that the probability distribution function of

the sum of N independent random variables, each having a density given in (2.7), can be written as

FN( a) = , (l-.)ieNi Q([3ia) , (6.12)
i-0

-where +(N.-)Y The resulting expression for P. for the e-mixture case is thus
i4(N-i)9?

(1.-e)i eN-- {Q(a) + e 2 (P'72 ) 2m~ jP a E1m (6.13)

and the truncation properties will be similar to those for the Gaussian case discussed in [11] and [12].

For this case, by using only two terms of the infinite series in (6.11) and (6.13) we obtain an

~estimate of P. for the linear correlator. Typical results showing the accuracy of this approximation

are depicted in Figure 6.1. These approximations are computed for Gaussian and c-mixture examples

with fixed signal-to-noise ratio ( SNR = 8 dB ) for some values of spreading sequence lengths N. As

j we anticipated, the estimate results in values for the error probability closer to the exact ones as N

grows. For the N-31, K=6 Gaussian case, this method is less accurate than for K=2. However, for

,* . . . . . . .)J., , . .< ,, . . , .' ' - " . Ig,. 4, ..
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highly impulsive examples, the approximation is very accurate even for small N. This is most likely

due to the small values of the higher-order derivatives of heavily tailed distributions at a. Consider-

ing the above finding, the Taylor series approximation appears to be very appropriate for estimating

the error probability for the impulsive non-Gaussian channels. Using this technique, we approximate

the error probability of the linear correlation receiver in e-mixture channels for three-and six-user sys-

tems. The results are contained in Table 6.1 with signal-to-noise ratio value of 8 dB and signature-

sequence lengths N-31 and N-63. As we learned from the above discussion, the estimates in Table

6.1 must be more accurate for the cases with larger values of N and more impulsive noise channels.

We also see that when the multi-user interference becomes more significant ( e.g., K - 6 ), the chan-

nel noise represents a smaller fraction of the total noise. Consequently, the performance of the linear

correlation receiver in these impulsive channels becomes comparable to the performance of that

receiver in a Gaussian channel under similar conditions.

6.2. Asymptotic Analysis

Equation (6.3) yields a useful approximation to the average bit-error probability for linear corre-

lation receivers in impulsive noise for large N. Now we consider the limitation of the system as N

grows without bound. Recall from the single-user analysis of Chapter 3 that in considering asymptot-

ics we wish to keep the energy per data bit, the length of the data period T, the noise power, and con-

sequently, the signal-to-noise ratio, constant as N changes. The statistic for the binary decision for

the linear correlator is

YN-I .0) +",D) + Tb()) 
(6.14)

where T'f()'s ,j = 0, 1,... N-1 are the noise components of the sampled signal with zero means and

vNoTevariances -i-'' The 1'?)'s are samples of the multiple-access interference and are defined as
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TABLE 6. 1. TAYLOR SERIES APPROXIMATION FOR ERROR PROBA-
BEIiTIES OF LINEAR CORRELATION RECEIVERS IN THE BINARY P5K
DS/SSMA SYSTEM ; GAUSSIAN AND e-MIX(TURE CHANNEL, SNR-8.0
dB.

FI ZK N-31 N-63

3 8A0Ox le 4.29 x le
0.0,13

6 3.59 x le7 1.09 x1l07

3 1.14x 10 5.55 x0le
0.1,10

6 3.84X l0r3 1N24 X107

3 4.01 x 100 1.95 x i10l
0.01,100

________ 6 6.56 x1T73  2.78 x1073

3 1.85 x10 8.76 x10- 3

0.1,100
__ __ _ __ _6 4.13 x 10-3 1.62X la-3

*Gaussian noise

- .~ .
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where Ij( ) is given in (5.12). Referring to (6.14), conditioned on the multiple-access parameters

p, = (t, _, b), the test statistic YN is seen to be the sum of N independent random variables. Thus,

the asymptotic error probability of the linear correlation receiver can be obtained by applying the cen-

tral limit theorem to the sum, as follows:

With the test statistic as given in (6.14), the asymptotic error probability is given as

P, = lim E',b 1/2Pr(YN_> 0 1 b)=-I , p)+ 1/Pr(YN< 0 bS')=+lpl)
N-}

This expression can be simplified using the assumed symmetry as

N-lim.. E .!,b{Pr(YN < 01 bSl)=+l ,pl)}. (6.16)

Now the term inside the expectation on the right-hand side of (6.16) can be written as

Pr(Y N < 0 [b6')=+l ,pj) =

.,

YNEYN b6)= + plI -E{YN I b6')=+l,pl} ]I
PI Var(YN Ib=+1 ,p) NIVar(YN i b +l ) + PJ (6.17)

Note that the conditional mean of the test statistic YN is given by
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NN-I

Ee Y[l l,( 'l+ I (6.18a)

N-I

where Ii(I is defined in (5.12) and relates to the total multiple-access interference as 1, = I/N Z I1 ).

j-0

Similarly, the conditional variance is given by

Var [YNI b(Sl)=1 N P] oTc (6.18b)

Thus, assuming that lr 11 (C, 0,b) exists almost surely, the central limit theorem implies that

N---#N N-.)+m -

urnim Pr rYN< 01bS') =+I , pl Q Fa[l+ lim 11(,1,0)] I (a. 's.). (6.19)

Therefore, since Q < 1, the bounded convergence theorem implies that the asymptotic multi-user

error probability of the linear correlation receiver can be written as

P E!{Q (a[I i 11(,4) 1, (6.20)

where II(b, _, 0) and a are as defined in (6.2) and (6.3).

From (6.20) we see that single-user performance in a multi-user environment is achieved

asymptotically by the linear correlation receiver if the following asymptotic condition is satisfied:

lim I(b, , t, 0) =0 almost surely. (6.21)

N-- +. - - -
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Furthermore, in Chapter 8, we will show that (6.21) is satisfied if

lim max l 0k ,(m) 1=0 and lim max I L0k.(m) =0 ,k =2,3,... ,K. (6.22)
N N ' N-- m N 

The existence of binary sequences satisfying these conditions follows by applying (6.22) to infinite

sequences proposed by Schneider and Orr [34]. Schneider and Orr show the existence of a sequence

set whose autocorrelation and cross-correlation functions approach ideal behavior (6.21) with increas-

ing N. Moreover, they prove that the cardinality of such sets of infinitely long sequences grows with

N. Thus, at least one large set of binary sequences having asymptotically ideal correlation properties

exists. However, by utilizing the sequences in [34], the convergence of (6.21) to zero is very slow.

This induces a limit on the number of subscribers to the channel with single-user performance. From

the discussion in [34], it follows that one can find at least N114 sequences such that (6.21) is satisfied.

Figures 3.8 and 3.9 in Chapter 3 contain the asymptotic bit-error probability for the linear corre-

lation receiver under the assumption that (6.21) is satisfied, since the multi-user impulsive noise per-

formance in this case is the same as in the Gaussian single-user case. Note that the above asymptotic

results also indicate that the approximate error probability obtained from truncating the infinite sum

in (6.3) is asymptotically exact for appropriately chosen sequence sets.

6.3. Moment-Space Bounds

In this section, we apply the moment-space bounding technique to bound the average bit-error

probability of the linear correlation receiver in non-Gaussian impulsive noise. This method, which

was developed by Yao in [44] and [451, is based on a result from the theory of games. To present the

application of the bound to our problem, we first state a simple version of an isomorphism theorem in

moment spaces which provides relations among arbitrary moments of a random variable.

V7

~~~L 4 - *'
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Note from (6.1) that our main objective here is to evaluate the mean of a function of the random

variable I( , , , ). Although a closed-form expression for the probability distribution function F,

of this random variable is not available, we know that its support is confined to a finite closed interval

E = [-D,D]. Referring to (6.2) and from [281 we have the result that for rectangular chip

waveforms

D max ICkI(m)I + ICk(m-N)I : 0 , q. (6.23)k=2 M

Now let X, and X2 be a pair of continuous functions defined on the interval . The generalized

moments of the random variable I, induced by the functions Xi(II) are

r
mi=fXi(I1) dFI--FE_,OIt Xi(It) , =i-,,2. (6.24)

For a giNen pair of continuous functions (, , X we denote the moment spaceM as

M= {m=(mIm 2 ) eR2 IM,=fXi(I)dFi,i=l,2 ,FIP(-=) (6.25)

where P ( E ) is the set of probability distribution functions defined on E [-D , D 1. It is easy to see

that M is a closed, bounded, and convex set in R2. The isomorphism theorem states that if we plot

7'(y) versus X-(y) in R 2 for y ranging over -, then the convex hull H of the resulting plot is the

moment-space M ( i.e. H - M).

The application of this resuit to bounding the error probability of the linear correlation receiver

s -vem as folows. Let Uje function 2 be defined by the expression inside the curly brackets in

6.1); that is,

.....

N % % %.-
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X2(y) = 'N [ a( 1+y)] (6.26)

Now let XI(y) be some continuous function of y whose generalized moment m, may be readily

evaluated. If this function is carefully chosen so that the resulting curve ( XI(y) , ,2(y) ) has a thin

convex hull over the range E , then we can use our knowledge of m, to obtain tight upper and lower

bounds on m2 , since H - M and, for this X2,

M2 = fX2(I1) dF,. (6.27)

We would like to choose X, so that the convex hull of the curve of X2 versus X is thin. How-

ever, in choosing X, , we must trade off the thickness of H with the evaluability of ml. A useful fam-

ily of candidate functions for X, consists of exponentials of the form

XI(y)=exp{h[l+yl , (6.28)

where h is a real parameter which can be chosen to tighten the bounds. For each choice of the kernel

we need to evaluate the corresponding moment. Referring to (6.2), we note that

mi=ehn[ Efexp[hk.l(bkCk, Ok) , (6.29)
k-2

where Ik, 's the multiple-access interference corresponding to the kh user. The moment-generating

function of the random variable Ik,1 appearing in (6.29) can ,)e written as

. .....
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E exp [hIkJ(bk k9 00} Io(h 4 ',-r- I 1 O[, t(m)+ k(m+l) D

+ Io(h1 [----O.i(m) +., (m+l)] dt (6.30)

where 1o is the modified Bessel function of order zero. The moment of X, (11) is obtained by substi-

tuting (6.30) into (6.28).

Having chosen Xi to be of the form (6.28), we use a graphical technique to evaluate the upper

and lower bounds on the error probability, in which we plot XI(y) versus X2(y) over the range BE and

complete the convex hull H graphically. Since we can compute m, via (6.25) the upper and lower

bounds on the error probability can easily be read from the graph by drawing a line perpendicular to

the axis corresponding to XI(y) from point m.

We also must search for the best value of h graphically. In order to help find the best h, we plot

XI(Y) versus both X2(y) and X'2(Y), where the latter is defined as

X'2(Y) = TVN [ a(1-y) ], (6.31)

and look for a close fit. Then, we define H' as the convex hull of the plot of X'2 versus Xt, and m'2

as the moment of X'2(1). Note that the intersection of H and H' contains moments corresponding to

symmetric probability distribution functions in P ( E ). Moreover, the convex set H for h is the same

as the set H' for-h. Therefore, we only need to consider positive values of h. ( Note that m2 = M'2 .)

For plotting X2(Y) and X'2(Y) versus XI(y), we need to evaluate 'TN for values of y in the range

For the e-mixture example, we use (6.12) and draw the curve for various distribution functions in

this model. Figures 6.2 through 6.7 depict the sets H and H' for these distributions and for N - 31

,|
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Figure 6.2. The convex sets H and H' for moment-space bounding for Gaussian example wiuth SNR -

8 dB, and N-3 1, h- 10.5.



74

0.01

10 1

x 2

0 10o6  2x106  3x10 6

Figure 6.3. The convex sets H and H' for moment-space bounding for the Gaussian example with
SNR - 8 dB, and N-63, h - 11.0.N
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Figure 6.5. The convex sets H and H' for moment-space bounding for e-mixture example with
e-0.01, 9?=100, SNR - 8 dB, and N-63, h - 7.0.
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and 63 with the same DS/SSMA system configurations considered in previous examples. Notice that

in these plots the convexity of these sets is not apparent since the vertical axes are in logarithmic

scale and the horizontal axes are in linear scale. We apply the moment-space bound to two and six-

user DS/SSMA systems in impulsive channels. The results are summarized in Tables 6.2 and 6.3. As

expected, for a fixed number of users K, as N increases, D decreases and the bounds tend to become

tighter. On the other hand, with fixed N, as the number of users increases, the bounds become looser.

Similar to what happened for the Taylor-series approximation, the moment-space bound results in

better performance approximation for more impulsive channels. A possible explanation for this is

that the exponential kernel in (6.25) better approximates X2(y) given in (6.23) for impulsive channels

than it does for the Gaussian case. ( Note from Table 6.1 that the Taylor series approximation lies

within the moment-space bounds in all cases common to both sets of results.)

6.4. Summary

In this chapter we have used two techniques to estimate the average error probability of the

linear correlation receiver in non-Gaussian impulsive channels. These methods were introduced as an

alternative to the exact computation proposed in Chapter 4 when N or K is large. Particularly for

impulsive channels, both techniques appear to estimate the performance closely. The principal

difficulty that arises in applying these methods is that the probability distribution function of the sum

of N non-Gaussian random variables has to be evaluated for some points near the signal-to-noise

ratio. However, this problem is essentially that of single-user analysis, and for the e-mixture case it is

trivial.

I
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TABLE 6.2. MOMENT-SPACE UPPER AND LOWER ERROR BOUNDS
FOR LINEAR CORRELATION RECEIVERS IN THE BINARY PSK
DS/SSMA SYSTEM ; GAUSSIAN AND e-MIXTURE CHANNELS, SNR-8.0
dB, N-31.

DISTRIBUTION K _______ P. pju

2 3.93 x le 4.16 x le 4.64 x104
GAUSSIAN

________ 6 1.44 x le 3A48 x100 8.58 x 1ra

e-M.TX'rURE
2 3.41 xc13  3.46 x 1 3  3.47 x10-3

E-O.0 I, 9?=100
6 4.10x 10 _____ 8.80 x 10

2 1.31 x 1(r 1.31 x10-3  1.35 x j0r 3

e-0.l,-?-100
_________ 6 1.51x IT' 8.80 x 0 3

I I OL lfjkCAI
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TABLE 6.3. MOMENT-SPACE UPPER AND LOWER ERROR BOUNDS
FOR LINEAR CORRELATION RECEIVERS IN THE BINARY PSK
DSISSMA SYSTEM ; GAUSSIAN AND e-MIXI'URE CHANNELS, SNR-8.O
dB, N=.63.

DISTRIBUTION K _____P____

2 2.96 x 10'4 3.06 x le 3.24 x le
GAUSSIAN

____________ 6 3.91 x1 le_____ 1.33 x le

e-M]XTURE

e.0'fl 2 1.72 x le~ 1.76 x le 1.77 x le

6 2.13 x 100 3.39 x le~

2 7.19 x 1O0 7.19 x le~ 7.22 x 10-3
e=O.1, 9-100

_________ 6 8.97xl104 2A8 x10-3
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CHAPTER 7

HARD-LIMITING CORRELATION RECEIVERS IN IMPULSIVE CHANNELS:

APPROXIMATIONS

One conclusion from the hard-limiting correlation receiver analysis in Chapter 5 is that comput-

ing the exact expression for P. can be very time consuming for large N. For this reason, when signa-

ture sequences of length more than 31 are used, bounds and approximations are needed to replace the

exact computation of P. In this chapter we propose an approximation, an upper bound, and a lower

bound for the multi-user error probability of the hard-limiting correlation receiver in impulsive noise.

The lower bound uses the idea of truncating a finite sum of positive numbers in the expression for the

error probability (5.18); the approximation is based on estimating the probability distribution function

of the test statistic YN; and the upper bound uses a Chernoff bounding technique. Also in this

chapter we analyze the hard-limiting correlation receiver's performance asymptotically in N.

7.1. A Truncated Series Lower Bound on P,

Our first bound on the error probability of the hard-limiting correlation receiver uses the

property that Pr [YN=2m-1 I b6S)=-l,pi] decreases sharply as m increases to (N + 1)/2. The

event { Y = m I has very small probability for large values of m when conditioned on bSI)=-I,

because YN taking some positive value m means the output of the hard-limiter was +1 exacdy

(N + m )/2 times, an event which becomes much less likely as m increases. Therefore, in computing

P via (see also (5.18))

j =

=(f Pr [YN m b6'-l ld (7.1)
rn- it b 0
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we can obtain a reasonably tight lower bound by adding only the first few terms of the sum of odd

m's from 1 to N. The accuracy of this approximation is easily controlled by including more terms in

the computation, noting the tradeoff with the cost. As an example, we compute a lower bound by

including only [log 2 (N 1) -1 terms in the summation in (7.1) instead of (N+ 1)/2. For the e-

mixture and Laplacian examples, we examine the tightness of this lower bound of P,(:_) for the

hard-limiting correlation receiver. Typical results showing the accuracy of this approximation are

depicted in Figure 7.1 and Tables 7.1 and 7.2. ( Also shown are approximate values to be discussed

below. ) These results are obtained for the same DS/SSMA system considered in examples in

Chapter 5. Examples are carried out with lengths of signature sequences equal to 31 and 63. Tables

7.1 and 7.2 correspond to SNR = 8 dB and SNR = 4 dB, respectively. As we see from these tables

and the figure, the bound is generally tight. Moreover, for more impulsive examples, which are the

most interesting ones, the lower bound is extremely tight.

7.2. Binomial Approximation

The above bound is still computationally expensive, although much less so than exact computa-

tion. Thus, simpler estimates of are of interest. One such estimate car. be based on approximating

the distribution function of the test statistic YN, which is given as

~~~.I zj= ~ ~ + 11.I
$YN = 2 ') sgn I'j'1 + Teb6' . (7.2) ".

j0 j=O

The error probability for the hard-limiting correlation receiver can be written in a form slightly dif-

ferent from (7.1), namely, I
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Figure 7. 1. Truncated series lower bound and binomial approximation for the error probability of
hard-limiting correlation receiver in s--mixture channels, SNR = 8 dB.
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TABLE 7. 1. TRUNCATED SERIES LOWER BOUND AND BINOMIAL
APPROXIMATION FOR THE ERROR PROBABILTY OF HARD-LIMITNG
CORRELATION RECEIVERS IN THE BINARY PSK DSISSMA SYSTEM ;
GAUSSIAN AND IMPULSIVE CHANNELS, SNR-8.0 dB, K-2 AND TYPI-

I CAL TIME DELAYS.

DISTRIBUTION N P.L P"= ___._

31 4.51 x 10 6.92 x 10-3 4.63 x 107'
GAUSSIAN

_________63 2..45 x le 2.93 x100 2.51 x 10

31 8.55 x lOr 1.77 x la 3  8.67 x IV
LAPLACIAN

63 1.01 X IV 1.63 x IV 1.02 x IV

e-M]IXTURE

31 3.87 x IOr 1.16 x 1V 3.90 x l0
E- .,- -l o63 5.73 x iT '4 1.05 x le' 5.77 x I Vr

31 2.58 x 1T' 4.54 x le 2.59 x le

E-.1, lo63 2.06 x i101o 1.68 x I1 ' 2.06 x 1010o
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TABLE 7.2. TRUNCATED SERIES LOWER BOUND AND BINOMIAL
APPROXIMATION FOR THE ERROR PROBABILITY OF HARD-LIMITING
CORRELATION RECEIVERS IN THE BINARY PSK DS/SSMA SYSTEM ;
GAUSSIAN AND IMPULSIVE CHANNELS, SNR-4.0 dB, K-2 AND TYPI-
CAL TIME DELAYS.

DISTRIBUTION N PL P. P.

31 3.89 x 10-2 4.52 x 10-2 4.14 x 10-2

GAUSSIAN
63 3.45 x 10- 3.81 x 10 3.68 x 10-2

31 9.77 x 10-3  1.26 x 1- 1.01 X 1O2

LAPLACIAN
63 4.70 x 10- 3  5.37 x 10- 4.84 x l0

e-MIXTURE
31 9.39 x l0 -e 1.27 x 102 9.72 x l0e-0.O1, =10
63 6.33 x 10-3  7.21 x 10-3  6.54 x 10-'

31 6.63 x 10-s  3.42 x 10 6.66 x 10-

e-0. 1, 9?=10
63 7.60 x 10-7  3.78 x 10- 7.61 x 10-F

! I
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EMQ~ f Eb Pr [YN<O I bo=+l ,pl)]} (7.3)

Note that, conditioned on the multiple-access parameters, the test statistic (YN+N)/2 is multinomially

distributed. Here we approximate this distribution by a binomial distribution for large N because the

approximation is asymptotically exact as N grows without bound, and the binomial distribution has

many attractive analytical properties. Thus, we approximate (7.3) as

- O - I N ' (7.4)

where q, is the "success" probability associated with the approximating binomial distribution. To

choose q, we equate the mean of the binomial approximation,

E f YN i')+1, p. } N [ 1-2qi , (7.5)

with the actual mean of the test statistic,

ETYN I b~l)-+l, p, -2 Y, Pr [Ili M> 1 + P~) 1.(7.6)
j.0O

For the e-mixture example ( which includes Gaussian noise as a special case ) q, is given as

q I -e)Q (7.7)

7.0 en7 -



88

where 22 "4 NON For the Laplacian example, q, is computed from the following

expression

where = NoN
wEr , and we have assumed that Ij1) I: 1, which holds for example when K - 2 or

when e , - 1 for all k. When K-2, (7.7) and (7.8) can be simplified by noting that I If') I takes only

two forms as in (5.15). Substituting (7.7) or (7.8) into (7.4) yields the binomial approximation for the

error probability P(Q_) for the hard-limiting correlation receiver.

Figure 7.1 and Tables 7.1 and 7.2 contain some numerical results that compare this binomial

approximation to the above bound and to the exact values of P.(_) for different values of N. ( A

DS/SSMA system identical to the one used in previous chapters is considered. ) The approximation

is evaluated for various parameters of e-mixture noise and also for Laplacian noise. Considering the

simplicity of the binomial approximation, the results in Figure 7.1 and Tables 7.1 and 7.2, particu-

larly for large N, indicate that (7.4) is a reasonably close estimate of P(j). In Section 7.4. we will

see that if signature sequences are chosen appropriately, the binomial approximation is asymptoti-

cally exact.

7.3. Chernoff Bound

In this section, we examine the tightness of the Chemoff bound when applied to the hard-

limiting correlation receiver problem. Saltzberg in [30] and Lugannani in [151 used this method for

intersymbol interference error bounding, which is similar to the problem of interest here. They found

the Chemoff bound to be superior to existing upper bounds in intersymbol interference studies. How-

M illiu 111
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ever, our investigation ( not reported in this thesis ) showed that applying the Chernoff bound to the

multi-user communication system in impulsive noise with the linear correlation receiver results in a

loose bound for error probability. For the linear case the moment-space bounds are better. However,

the moment-space technique cannot be applied directly to the hard-limiting receiver, and so despite

the possibility of achieving a loose bound, we pursue the Chernoff technique for the hard-limiting

correlation receiver.

To understand the application of the Chernoff bound, we first write

P, . (7.9)

-, {Pr[YN; 1II b6 = -1 , p,}

Then, we define a new zero mean random variable as

A± ) - 'B I b ,l) -1 (7.10)

where is given in (7.2). Now we can rewrite (7.9) as

9iE{2(')=b&) 2P } T (7.12)

N,,

In (7.12) TV(a) is defined as Pr i> a 1.where i s a typical normalized noise sample with unit vani-

N--
ance. Now if we define d as Z [j and then we can write

j-0
N-IN

j ne o i edfn s a t adte zca rt s
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tion I

Pr [ =a =ea Pr[1'j 5=a] t>0 (7.14)

where A,.is the moment generating function of the random variable It. Replacing 1'j, with ~,the

expression inside the curly bracket in (7.13) can be bounded from above as

N+1 N+1
2 P[ ]2F=2-Ji1

N+1

5exp~m,,(t)-t(I-gt)] J: Pr 2m--p,(.5
zn-i

where rn.(t) =In [M., (t) ]. Finally, for any value of t on the positive real line we have

Pe(j: Eblo_{exp [ttSt+mj.(t)] } (7.16)

, IN
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To get the best bound we minimize the right-hand side of (7.16) with respect to t. In particular,

we are looking for to such that

to =arg {min [nl+tP s-t]} (7.17)

Differentiating the argument in (7.17) and setting the result equal to zero results in

t - (7.18)

In order to see whether a solution to (7.17) exists and it satisfies (7.18), we write the expression for

n i (t) for the hard-limiting correlation receiver as

N + e ) t ~ I (719
rn , (t) =Y In e 2 (7.19)

j.0

Using (7.19), it is easy to show that to satisfying (7.18) is obtained by solving

N-I 1-j--(I+.j)e2 t (

T- -2 =0 , t0>0 (7.20)io 01-gi+ (1+gi) e~

From (7.19) it follows that a solution to (7.20) exists and satisfies (7.17). Finally, the Chernoff

bound on the error probability of the hard-limiting correlation receiver is given as

Ua): {~m exp t s-o+r~.(o (7.21)

J'

U , ---. €.W... ,.. V % , . \'- 9. ,q . .% .. *.% % %. d
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where to is obtained by solving (7.20). We examine the tightness of the Chemoff upper bound on

Pe('r) for the e-mixture and Laplacian examples. Typical results accessing the accuracy of this

approximation are depicted in Tables 7.3 and 7.4. These results are obtained for the same DS/SSMA

system considered in the examples in Chapter 5. These examples are carried out with lengths of sig-

nature sequences equal to 31, 63, 127. Tables 7.3 and 7.4 correspond to SNR - 8 and SNR - 4,

respectively. As expected, this bound is not particularly tight; however, its simplicity and the lack of

alternative bounds makes it potentially useful.

7.4. Asymptotic Analysis

In Section 7.2 an approximation was obtained for the bit-error probability of hard-limiting

correlation receivers in impulsive noise that was good for large N. Also in Chapter 5, more significant

improvement in performance of the hard-limiting correlator over the linear correlator was experi-

enced as we used longer signature sequence lengths. Motivated by these findings, here we investigate

the behavior of hard-limiting DS/SSMA correlation receivers when the length of the signature

sequences used per data bit becomes infinitely large.

Recall from the asymptotic analysis in Section 6.2 that conditioned on the multiple-access

*parameters pl, the test statistic is a sum of N independent random variables. Therefore, assuming that

'rn E { Y I b'=1p1} .}2
Vlira bE I lYppl exists almost surely,N-,--. Var ( Yr4Ib= I ,p,)

the average bit-error probability can be written asymptotically as

P.=E.b Q K -} (7.23)

4 4
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TABLE 7.3. CHERNOFF UPPER BOUND FOR THE ERROR PROBABILITY
OF HARD-LIMITING CORRELATION RECEIVERS IN THE BINARY PSK
DS/SSMA SYSTEM; GAUSSIAN AND IMPULSIVE CHANNELS, SNR-8.0
dB, K-2 AND TYPICAL TIME DELAYS.

DISTRIBUTION N __ .____.

31 4.63 x le 2.43 x l0r
GAUSSIAN 63 2.51 x 103 1.38 x 10r2

127 2.77 x 10r 1.0 x lcr2

31 8.67 x le 5.22 x le
LAPLACIAN 63 1.02 x 10e 6.28 x 10-4

4127 5.41 x i1Ol 2.63 x I 0'

e-MIXTURE
31 3.90 x l0r 2.67 x10-3

63 5.77 x 10- 3.61 x10-4

31 2.59 x le 2.13 x105'

63 2.06 x 10-'o 1. 17 x 10-9

z -dv

o% &6.2.N
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TABLE 7.4. CHERNOFF UPPER BOUND FOR THE ERROR PROBABILITY
OF HARD-LIMITING CORRELATION RECEIVERS IN THE BINARY PSK
DS/SSMA SYSTEM ; GAUSSIAN AND IMPULSIVE CHANNELS, SNR-4.0
dB, K-2 AND TYPICAL TIME DELAYS.

DISTRIBUTION N P. pu_

31 4.14 x 10 2  1.65 x 1T 1

GAUSSIAN
63 3.68 x 10-2 1.62 x 10-I

31 1.01 x l0-2  4.75 x 10-2

LAPLACIAN
63 4.84 x 10- 3  2.56 x 10-2

e-MlIXTURE

31 9.72 x I0- 4.66 x 10-2
E=0.0I, y2= 1063 6.54 x 10-3  3.39 x 10-I

31 6.66x 10- 5.18 x 10-4

=o,9o63 7.61 x l0 4.84 x 10-

[]I
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where N..A.m EiZ I bS'=+l~pij. and (l)4 imVar 2NI bS'=-1  Note that

here YN is given in (7.2). For a given set of multiple-access parameters the normalized mean can be

written as

E?=ur 1N-IaEy lm -2'f'I-+[111~)I, (7.24)

where 'f(a) =Pr [ ij > a ] is the complementary distribution function of a typical noise sample ii, nor-

malized to have zero mean and unit variance. For the E-mixture example, the distribution function in

(7.24) is given as

Similarly for the Laplacian example we have

'F(a)=jexp {-42-a1 for a O0. (7.26)

Referring to (7.24), the probability distribution function can be expanded in Taylor series about

a

+1 + (7.27)
N'n!

where Tp(') is the n~' derivative of T'. Now if T~(.) is analytic and we have the following asymptotic
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property:

li -I d (1'M)* kp(n)( Ot = 0 (a~s.),,

I; -, __ ' (7.28)
N - -+ . , j .%O n - I N -2 n ! [

then we can write

E= N-+- [i I_2J(.:,) 2cfT(0) (7.29)

where fy1 is the probability density function of r. From (7.2) and (7.29), it follows that (ay)2 is

equal to 1. This yields a simple expression for the asymptotic error probability of the hard-limiting

correlation receiver as

Nlim Pe =Q I2afyf(O) , (7.30)

if (7.28) is satisfied. Note that Q(2afff(0) )is the asymptotic single-user performance of the hard-

limiting correlator ( see Chapter 3 ). Thus, (7.30) implies that single-user asymptotic performance is

achieved by the hard-limiting correlation receiver if the condition (7.28) is satisfied.

Regarding condition (7.28), note that the order of summations can be interchanged if

N- I . x im n  ,() .)!
N-im -I cI) ,iq_ <+00 (a.s.)

N-*+o j=O n-i N 2n!

Assuming that I4(')1<K and that there exists ueR such that n ) u for all n and large ..
" *NN

Vi
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enough N then condition (7.31) is satisfied if the number of users is finite. However, (7.31) can hold

for infinitely large K, for instance, it is easy to see that (7.31) will be satisfied if

N- 1 I
-1 +1<+- (a.s.) Vn . (7.32)

j-o N 2

By induction we can show that the conditions

N-i I'f' l2

lira I,(b,_,) =0 and lim N = - = 0 (a.s.) , (7.33)N-#+--- N "*+* j.

are sufficient to meet (7.28) and (7.31) if K<5 N1 4. Note that the first part of (7.33) is identical to the

condition for the linear correlator (6.21). The second part is satisfied by imposing slightly more res-

trictive upper bound on the number of users. Thus, the ability to achieve a single-user performance

asymptotically in N is possible within the above regularity conditions, and so Table 3.1 and Figures

3.8 and 3.9 contain the asymptotic average bit-error probability for the hard-limiting correlation

receiver within these conditions.
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CHAPTER 8

NONLINEAR CORRELATION RECEIVERS IN IMPULSIVE CHANNELS:

ASYMPTOTIC ANALYSIS

In Chapters 6 and 7, we investigated the asymptotic performance of linear and hard-limiting

DS/SSMA correlation receivers .as the lengths of the signature sequences grew without bound. In

turn, asymptotically ideal DS/SSMA signals were proposed. To gain further insight into the non-

linear problem and explore the fundamental limitations of these systems, we carried out an asymp-

totic analysis for general nonlinear DS/SSMA correlation receivers depicted in Figure 8.1, where g is

a general memoryless, nonlinear element. Then, we searched for necessary asymptotic properties for

the spreading sequences that assure asymptotic single-user performance in a multi-user environment.

Recall that in the asymptotic analysis the energy per data bit for a user, the length of the data

period T, the noise power, and in turn the signal-to-noise ratio are kept constant. However, the length

of the signature sequences used per data bit is growing without bound, and in turn the sampling ( and

chip) period T, is decreasing to zero. Also note that we rescaled the data by -IN- to keep the correct

scale (this prevents us from having to allow the nonlinearity to change with N ), and therefore the

test statistic is written as

N-I r 1

~NoT#

where rTj 's are samples of noise with zero mean and variance -NOT and g is the nonlinear element. In

(8.1) the I'j(')'s denote the contribution of multiple-access interference in the samples of the received

signal and are defined as
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I'l)~ 'TC IfI') j=,1,...,N- 1, (8.2)

where III) is given in (5.12). Note that I'll) relates to I(,,)defined earlier in (4.5) through

N-i1I

jWO - .(8.3)

Referring to (8. 1), conditioned on the multiple-access parameters pl, YN is seen to be the sum of

N independent random variables. To apply the central limit theorem to the sum (8. 1), we first assume

that

lim. E { YN I bS")=+1, ,P1 exists almost surely, (8.4)
N-++-0 X/V-ar(YN Ib(F1=+l'p1)

then, via the bounded convergence theorem, the average bit-error probability for the nonlinear

DS/SSMNA receiver can be written asymptotically as

eErOb{ []} (8.5)

A N Ibl=lIand (ay)2 Yrn Ia u bS)=+lP] For awhere E?= li E _ P ima K4N
given set of multiple-access parameters the normalized conditional mean can be written as

PLI
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N-Ia I~]~~~~1+.1ipNp- jOEy = urn 7 j [g(X+ON[1 jl])gXO[Il()) fj(X)dX, (8.6)

where ON \I T. Similarly, the variance of the normalized test statistic has the form

('ay), im N -L N- I I 7 [g2(X+ON~IfI()])+g2(X-ON[1 +1:1)1)] f;(x)dx
j= 00

-urn 1N-I
N-++. N f [g(X+eN[1+Ijw))g(X-eN[1+Ijn)] fi (x) dx. (8.7)

In (8.6) and (8.7) if conditions of the dominated convergence theorem are met by the integrands,

then the order of the infinite sums and the integrals can be interchanged (see [6] page 257). We first

concentrate on (8.6); if g(-) is analytic and has a bounded second derivative then we expand the

integrands, in (8.6) as

9 ( +ON 1 Ij')1)= g ( X + ON) + ON Ij' g' (X + ON) + 2(8)

for some 4 ( X + ONj, X + ON 11+ Ij(' ). Substituting (8.8) into (8.6), we realize that if we have the fol-

lowing asymptotic properties

(a p) 2  
N I )1= a.)

2 u~" r N I (a8.9)
N 2

and
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N-i 10()
a i g"X+UN)+8'(X-(NJ)iTI(x)dx=u (a.s.), (8.10)

wit cc N0 n, - 9 then we can simplify (8.6) as

No 4

E.? f lrn 4N [g(x+ ON)-g(x-O.1fli(x)IX. 8.1

where f j (.) is the probability density function of a typical zero mean noise sample which has variance

032. Note that (8.11) can be simplified further to

Ey= CEO '(x) fi (x) dx, (.2
0

Similarly for (a.?) 2 inl (8.7), since g2 is analytic and assuming that g2 has bounded second

derivative, then the integrands can be expanded in a Taylor series about a point near x, i.e.,

g2 (X+ON(1+Il)])=g 2 (X+O)N)+8~Ij(l) (g 2 )'(X+ON)+ N 2 ' 2( 2 "~, (.3

forsoe E x+N~x8N ii~')].In (8.13) (. 2 y" is the 2nd derivative of g2. Substituting

(8.13) into (3.7), we realize that if we have the following asymptotic properties

(W3) sup((g 2 )" ) liM __I N-I1 1 a .(.4
2 1%q2 Z~ 1 2o (~.,(.4

0I
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a a lm - I' ) [(g2)'Cx+ON)- (g2)'(x- (N) fj x)dx=0 a.s.), (8.15)
N-++" N - j -O

and also

I [g(X+6Nl +Ij()])-g(x-N[l+Ii(i)])]fi(x)dx <-- (a.s.) , (8.16)

for some d > 0 and all j = 0, 1,...,N - 1, then we can simplify (8.9) as

i y)2 = 2J g2 (x) fi (x) dx. (8.17)o0

I Finally, (8.12) and (8.17) yield the following expression for the argument of the Q function in

, (8.5):

243 g' (x) f (x) dx
- 2d 

(8.18)
0[: g2 (x) f (x) dx

if the conditions (8.9), (8.10), (8.14), (8.15), and (8.16) are satisfied. By substituting (8.18) into the

expression for the asymptotic error probability given in (8.5), we recognize the possibility of single-

user performance as

lim P-Q T -v (8.19)
N.

I
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where v is the detection efficacy defined in (3.1 1), which for the nonlinear correlation receiver is

easily derived as

- 2

2 J g (x) fi (x) dx

v = 0 (8.20)
- g2 (x) fi (x) dx
0

We have just shown that asymptotically in N and within regularity on the nonlinearity the non-

linear correlation receiver can perform with single-user error probability in a multi-user environment

if the conditions (8.9), (8.10), (8.14), (8.15), and (8.16) a. . satisfied. Since we assumed that both g

and g2 have bounded second derivative, the above conditions are satisfied if

nlim. (bt,) =0 and nlim j N =0 (a.s.), (8.21)
-N-#..-0 N3/2

if the number of users does not grow faster than N1 4. Note that the first part of (8.21) is identical to

the condition for the linear correlator (6.21). The second part is satisfied by imposing slightly more

restrictive upper bounds on the number of users, and is the same as the analogous condition derived

for the hard-limiting correlator.

To study further the condition (8.21), we first recall from (6.2) that the multiple-access interfer-

ence can be written as

K Wk,(ll(t_,_ O)-7 E k.1 COS~k-' N (8.22)

k=2

where
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Wka = bj) [dic Ck, ( mk -- N + 1) + ( I- dk) CW~ ( mk - N )]

+ b&) [dk Ck,1 (mk+l) + (1-d) Ck.1 (Mk)]. (8.23)

In (83 k N'r  k  

--
A_ T

-In (8.23)dk -- ,mk T , and Ck, is the discrete aperiodic cross-correlation

function defined in (4.10). For a finite number of users and from (8.22) and (8.23) it follows that

(8.21) is satisfied if we have the following:

lim I-max Ckj(m) = 0, (8.24)I N-*N+ N m L

for all k,i such that k~i. This is equivalent to the conditions

N--r max N kji(m) 1=0 and lim max ki (M) (8.25)N- ++-mm N-N-+(8.m5N

for all k and i such that kai. As mentioned earlier, the existence of binary sequences satisfying these

conditions follows by applying (8.24) to infinite sequences proposed in [34]. For these sequences the

convergence of the crosscorrelations to zero is very slow. However, for the infinite-user case the con-

I
dition (8.22) is still satisfied as long as the number users do not grow faster than N 4 .

An important issue to discuss here is the interpretation of the desired condition (8.25) in terms

of bandwidth requirements. First we write the discrete Fourier transform of the signature sequence

a(k) as

=-A (k a¢ fm r~, .. -l (8.2-6)
m N A=
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where WN = exp I -N . Let @,ra() denote the DFT of the periodic crosscorrelation function r,i(').

It is well known that

, (mn) = N AmAm ) m=0,1,... ,N-1. (8.27)

From the discussion in [34], a large set of infinitely long sequences can be generated such that for

these sequences (8.25) approaches zero as fast as N" for some 0<u<-. For the sequences in the set

12
SN, ,ik(m) grows with N, but as slow as N11 with 0<u<- for all m. From (8.27) it follows that

2

A-,(k) A, (') approaches zero as fast as N for all m and all pairs of sequences in SN. In summary,

(8.25) implies that

lira A.m(k) Am(') -0 for all meZ. (8.28)

This indicates that the signals are occupying different frequency bands which causes the infinite-user

communication system with asymptotically ideal sequences to use infinitely large bandwidth.

To illustrate the frequency domain characteristics of these sequences consider the following

example. Suppose the signature sequence a1t with aj(')= + 1 for all 0<j<_N- 1 is a member of the set

4 of asymptotically ideal sequences. Then the DFT of aP) is

A_(1..= I lif n=0 (8.29)
A o if me=l, 2,...,N-1

Now as N grows without bound, the condition (8.28) implies that all other signature sequences in SN

must have

.4

* €' - . **
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lir Ao0 =0 when k l. (8.30)
N--+o II

Hypothetically, the set of K sequences can be built by forcing the DFT of a(k) to have a nonzero value

only at one point, Ak)j * 0. Thus (8.28) is satisfied; however the spectrum is completely occupied by

the infinitely many users. This is not surprising, since single-user performance is achieved in an

infinite-user environment.

In this chapter we have analyzed the performance of nonlinear DS/SSMA correlation receivers

as we let N grow without bound. Assuming some regularities on the nonlinearity, conditions for

multiple-access signals were obtained to have asymptotic single-user error probabilities in an

infinite-user environment. This limiting behavior of P, implies that the performance of multi-user

communication systems in impulsive channels can, for long sequences, be improved significandy,

knowing the statistical characteristic of the channel noise.

ii

,.i

• A-

,Vi'-
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CHAPTER 9

SOFT-LIMITING CORRELATION RECEIVERS IN IMPULSIVE CHANNELS:

APPROXINIATIONS

The results of Chapter 5 indicated that the improvement in performance by using the hard-

limiting receiver in place of the linear correlation receivers increases as the tails of the noise distribu-

tion become heavier ( recall that the SNR was fixed). However, for less impulsive noise examples

(e.g., Laplacian noise ), we observed that for small N and K=2 the conventional linear receiver out-

performs the hard-limiting correlation receiver. Comparing the two receivers, the linear correlator is

more effective against multiple-access interference, whereas the hard-limiting correlation receiver is

more effective against impulsive channel noise. We combined these desirable features and intro-

' duced soft-limiting correlation receivers as an alternative for moderately impulsive channels. The

performance of the soft-limiting correlator will be investigated in this chapter.

The soft limiter is the optimum nonlinearity for detecting the presence of a class of signals in

Laplacian noise. In this case the memoryless nonlinearity is the clipper function defined as

f-x < -c
cl(x) = X-C.. x < c (9.1)

where c is the clipping level. Although it is a suboptimum nonlinearity in a multi-user environment,
unlike the hard-limiter, the linear portion of the soft-limiter allows passage of the multiple-access sig-

nal. Similar to the hard-limiter, the limiting part of the soft-limiter controls the effects of non-

Gaussian impulsive noise samples (see Figure 91).

Computing the average bit-error probibility of the soft-limiting correlation receiver in a multi-

user system is extremely complicated. TMerfr . n this thesis, we resort to asymptotic performance

analysis and an upper bound on the mui::-us:- 2rror probability.

I'% %
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9.1. Chernoff Upper Bound

. In this section, we bound the error probability of the soft-limiting correlation receiver in a

multi-user environment by applying the Chernoff bound. We begin by writing the error probability

as

P )E,b {Pr IYN =0 I b6') =-l pi} (9.2)

4 1V where the test statistic YN is given as

1YN=  -=b i  (9.3)

"k jj=O j-0 lII + 1P + 12

cl is the clipper function. Now, we define a zero mean random variable by

1)j4 2 t) - E I 2j1) I b6l)=-l , PI (9.4)

where 20') is given in (9.3). By substituting (9.4) into (9.2) we can rewrite the error probability as

P()=EOb Pr Z Nj- 7 E b , (9.5)

Note that in (9.5) the mean of ZJ1 ) is the ,::iditional expectation of 21j) given b ')=- and is given

as

,q' *]



E{Z ' b 1 =-I,pu1=cPr f(rj > c'I- Pf)]cPr 1(l) < c + Il]

+ [+-lf') f)() x (9.6)

where S T2 c /iiT and c' 4
' In (9.6), fTVI denotes the, probability density function of a typical

niesample nflj) which has zero mean and variance li- Similar to the analysis in Chapter 7, the

expression for the error probability can be bounded from above as

4N-1where p = E {± 1 I bS6" = -1 ,~ p, and m,,(t) I n [M .(t)] Here NM.(t) is the moment generat-
j -o

ing function of the random variable Y,~ = T conditioned on b6') = -1 and pi. Note that, condi-
jsO

tioned on the multiple-access interference, the nj's are independent, but not identically distributed.

Therefore, M .(t) can be expressed as the product of the moment generating functions of the jj's

which are given as

M1,(t) -e'cJ)Pr IT1J-L)>c'+ 1 l('J + e('_)LPr [1-'<-~c'+l I')

+5 exp It [( X + 01) - - - Lji F'1 (x) dx, (9.8)

'C +I-It
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where Lj 4 E j j bI W'1-1 ,P1 I. Recall that (9.7) holds for any positive value of t; therefore, to i
achieve the best bound we minimize the right-hand side of (9.7) with respect to t. In particular, we

are looking for to such that

Similar to the derivation in Chapter 7, differentiating the argument in (9.9) and setting the result

equal to zero yields the following: I
N-I M'(to)
F, o + Aj=O to>O. (9.10)

If (9.10) can be solved, the Chernoff bound on the error probability of the soft-limiting correlation

receiver is given as

where to is obtained by solving (9. 10).

Due to the complexity of the expression for M.,(t), we pursue this technique only for the Lapla-

cian channel example. The Laplacian density function is given by

FO

N,,N
where the variance of TEj11. is (- The cumulative distribution function for this example isM("b
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given as

1d)a=--ye a2-0. (9.13)

Considering (9.12) and (9.13), the expression for the conditional mean of Zj can be simplified as

E{I2j Ib~t) = -1 ,p,}= I -Ij(1 --- e - sinh[ F2(1 -111)). (9.14)

Similarly, the moment-generating function of j given in (9.8) can be simplified to

'e e' > '  2
M e1-) + e + - 2,,2,_2 e (9.15)

t~a +5a

where ,1 and c --. Next (9.15) is substituted into (9.10), which is then solved for to.

The Chernoff bound on the error probability of the soft-limiting correlation receiver is obtained via

(9.11).

9.2. Asymptotic Analysis

In this section, we investigate the behavior of the soft-limiting DS/SSMA correlation receiver ME

when the length of the signature sequences used per data bit becomes infinitely large. As mentioned

earlier this analysis provides information about the limiting behavior of P. that could be useful in

cases when N is large but still finite. As before, we apply the central limit theorem and obtain a
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Gaussian estimate of the error probability for the soft-limiting correlation receiver which is asymptot-

ically exact.

Recall from the asymptotic analysis in Chapter 8 that, conditioned on the multiple-access

parameters pl, the test statistic is a sum of N independent random variables. Furthermore, note that

the received data can be inflated by 4 to keep the correct scale, and then the test statistic is written

as

YN= 7 cl +[NjM + ' bTb6)] (9.16)

44
•where ml's are samples with zero mean and variance --i-. In (9.16), are defined in (8.2) and

(8.3). Applying the central limit theorem to the sum (9.16), the asymptotic bit-error probability for £
the soft-limiting DS/SSMA correlation receiver can be written as

4 .E~bQ [Y]} (9.17)

AYN 2AfN II)+
whereEi- lim E L b6Ib =+l,pj and(?)2 -A lir Var = ,P. Notice that

N-'++- N--[+N

(9.17) can be thought of as an estimate of the bit-error probability of the soft-limiting DS/SSMA

correlation receiver which is asymptotically exact. We pursue the estimate based on (9.17) by ela-

borating on the argument of the Q function. For a given set of multiple-access parameters the nor-

malized mean of the test statistic for the Laplacian channel example is given as



[" N-_ sih[_(I+I___ )_]___
N + - N-' (9.18)

E, wher r~ e Noo

where l-- Note that for very large N, (9.18) can be closely approximated by

EyZ'J -~iT +1( I)e4TT lI~,r (9.19)

where Y L-. Similarly, the variance of Y is given as follows:

NOT N-I - 2 T NOT4? No+ lim 2  L+:Zj -'-c+_--_=0

N-I cosh - N-I 2  (9.20)
Irnlim Y, I b(l=+1 ,  (9.20)

j-O N J +C* N" j0

where Yj is the argument of cl in (9.16). Also notice that for large N, (9.20) can be approximated by

-2 - OT c+-'" e- N - ' (9.21)
Y4 4 T

To obtain an estimate for the error probability of the soft-limiting correlation receiver, (9.19) and

.....
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(9.21) are substituted into (9.17) which yields

N -F[It + 11 (b,I, -- 4 (T
PeNb o , (9.22)

Note that the accuracy of the approximation (9.22) improves with N. It is also interesting to observe

that the soft-limiter analysis in this chapter reduces to the analysis for the linear correlation receiver if

we let c = -. On the other, hand notice that when the clipping level is set to zero, the receiver gen-

erates zero test statistic, and the resulting error probability is one half. Since the error probability of

the soft-limiting correlation receiver is estimated by a simple form in (9.22), this expression can be

used to elaborate on the performance of the receiver. In particular, (9.22) is compared with the

expression for the error probability of the linear correlation receiver given in (6.1). In that analysis, if

N-I
the distribution of the sum of N independent identically distributed random variables T was

j-o

approximated by the Gaussian distribution, the expression (6.1) would be estimated by

Pe = E1b Q [ l+lj(,,b) ] (9.23)

44Note that for large enough N, (9.23) results in a good estimate of the error probability for the linear

correlation receiver in Laplacian noise. Now comparing the approximation for the performance of

the soft-limiting correlation receiver with that for the linear correlation receiver we notice that they

differ by a factor in the argument of the Q function. From (9.22) this factor is seen as a function of

4i

- . , . . . .-,:.. .. .. : . .. . .. . . . - -< ,x.--.,.V " , r
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the clipping level c and is given as

y(c) l-_

yc) = 1 2 (9.24)

Looking closely at (9.24), it can be shown that (9.24) is greater than unity for al! finite values of clip-

ping level c. Therefore, according to this application, soft-limiting correlation receiver outperforms

the linear correlation receiver for the Laplacian channel example. The approximate performance of

the soft-limiting correlation receiver can be evaluated via (9.22) by adjusting the signal-to-noise ratio

and applying the technique developed in Chapter 6 for the linear correlation receiver. Particularly,

the adjustment increases the effective signal-to-noise ratio in the following way:

4fa'c,
l-e N

I' c - (9.25)
.4 [ *jF2fccf' -2

_1~ .g-e N

where a _ IV

9.3. Numerical Results

The numerical results presented here are aimed at showing an improvement in performance by

using soft-limiting correlation receivers in place of linear or hard-limiting correlation receivers when

the channel is impulsive but not excessively so (e.g., Laplacian channel ). However, due to the corn-

plexity of analyzing the performance of nonlinear DS/SSMA correlation receivers, we can only com-

-' ~ ~{~ 9.{iC~
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pare the exact error probabilities of linear and hard-limiting correlation receivers with the estimates of

the error probability of the soft-limiting correlation receiver developed in the previous two sections.

The Chernoff upper bound is obtained by first substituting (9.15) into (9.10) and then solving I
for to, and the bound is then obtained via (9.11). Table 9.1 contains results for the Laplacian channel

example with signal-to-noise ratios 8 and 4. These results are obtained with the same DSISSMA sys- I
tern parameters considered in the examples in Chapter 5. These examples are carried out with lengths I
of signature sequences equal to 31, 63, 127, and 255 and different values of the clipping level c.

Comparing Table 9.1 with Table 7.3 the Chernoff upper bound on the error probability of the soft-

limiting correlation receiver results in lower upper bounds than that for the hard-limiting correlation

receiver for all the values of N.

Again for the Laplacian channel example, we examine the Gaussian approximation introduced

in the previous section which estimates the performance of the soft-limiting correlation receiver via

(9.22) using the Taylor series expansion technique. These results which are asymptotically exact as

N--*+*, are used in comparing soft-limiting correlation receivers with linear receivers and are dep-

icted in Tables 9.2 and 9.3. These tables are generated with signal-to-noise ratio 8 and 4, respec-

tively, and with different clipping level. The examples are carried out with lengths of signature

sequences equal to 31, 63, 127, and 255. Here, by comparing the approximate error probabilities in

Table 9.2 with the exact ones in Table 4.1, considerable improvement in performance is observed by

using soft-limiting correlation receivers in place of linear correlators for the Laplacian channel exam-

ple. However, note that the average error probability for the linear receiver is an exact computation,

whcreas results for the soft-limiting correiation rcceivers are merely approximations of the average

error probability and are only asymptotically exact. Although these finding are not decisive they do

provide a trend for further :nvest:;ation on ,hc subiect.

- %
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TABLE 9.1. CHERNOFF UPPER BOUND FOR THE ERROR PROBABILITY
OF SOFT-LIMITING CORRELATION RECEIVERS IN THE BINARY PSK
DSJSSMA SYSTEM ; LAPLACIAN CHANNEL.

N NORMALIZED CLIPPING LEVEL c' K-1 K-2
SNR = 8 dB

31 1.7 4.74 x 10-4  2.94 x 10 3

63 1.5 1.55 x 10 2.57 x 10 4

127 1.5 6.67 x IV 1.24 x 104

255 1.4 3.28 x le- 5.01 x 10
SNR =4 dB _

31 1.4 2.67 x 10-2  4.89 x 10-2

63 1.4 1.94 x 10-2 2.36 x 10-2

127 1.4 1.47 x 10 2  1.80 x 10-2

255 1.5 1.21 x 10-2 1.39 x 10-2

7 1

Il%,~ ~
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TABLE 9.2. ASYMPTOTIC APPROXIMATION FOR ERROR PROBABIL-
ITY OF SOFT-LIMITING CORRELATION RECEIVERS IN THE BINARY
PSK DS/SSMA SYSTEM ; LAPLACIAN CHANNEL, SNR-8.0 dB.

N NORMALIZED CLIPPING LEVEL c' K- I K-2

1.0 4.95 x 10-7  5.86 x 10- 6

31
0.0521 2.60 x l0 3.83 x 1Or6

1.0 3.56 x I0 2.39 x le63
63 0.09 2.53 x 10f 1.89 x 10"6

0.1 2.60 10-7  6.51 x 10 7

127
0.148 2.52 x l0 6.35 x 107

0.1 4.52 x 10 6.88 x 10-'
255

0.46 2.65 x 10 4.19 x 10-7

//

:2-
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TABLE 9.3. ASYMPTOTIC APPROXIMATION FOR ERROR PROBABIL-
ITY OF SOFT-LIMITING CORRELATION RECEIVERS IN THE BINARY
PSK DS/SSMA SYSTEM ; LAPLACIAN CHANNEL, SNR-4.0 dB.

N NORMALIZED CLIPPING LEVEL c' K-1 K-2

1.0 9.13 x 10-4  1.47 x 10 3

31
0.1 7.72 x 10-4  1.28 x 10-3

1.0 8.35 x 10.4  1.11 x IV-

63
0.1001 7A9 x 10 1.01 x 10 3

1.0 7.98 x 10-4  9.23 x 10-4
127

0.1 7.53 x 10-4  8.73 x 10

0.1 1.62 x I0- 1.70 x 103

255 %
0.81 7.73x 1W"4  8.29x 10 O

A

I 

%
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CHAPTER 10

SUMMARY AND CONCLUSIONS

In this thesis we have considered an asynchronous multi-user communication problem over

impulsive non-Gaussian channels. To have multiple-access capability the direct-sequence spread-

spectrum technique was used. In the receiving end, linear and nonlinear correlation receivers were

used and the performances of these receivers were evaluated by examining their bit-error probabili-

ties. These nonlinear correlation receivers were developed by inserting a nonlinear element in the

structure of the conventional linear correlator. This nonlinearity was introduced to limit the influence

of the impulsive channel on the test statistic used by the receiver. A tractable way of studying corre-

lation receivers in non-Gaussian impulsive channels was also introduced by modeling samples of

S--. noise after front-end filtering. The main assumption concerning the additive, zero mean channel

noise is that these samples taken at the chip rate are independent. This allows us to study impulsive

noise sources by modeling their post-sampling first-order probability distribution functions. Among

various first-order non-Gaussian models we considered the e-mixture of two Gaussian distributions,

and the Laplacian distribution; these are tractable, commonly used empirical models for impulsive

environments. The multi-user communication system under study was examined against these impul-

sive noise channels.

The model of the asynchronous binary PSK direct-sequence SSMA system considered here

allowed a number, K, of users to share a channel. The linear and nonlinear correlators were assumed

to be matched to the first of the users' signal. The structure of the nonlinear correlation receiver

*included an integrator, and the output was sampled at the chip rate. These samples were then passed2V.- through a memoryless nonlinearity. The decision on the parity of a data bit was based on the sum of

N samples corresponding to that bit taken at the output of the nonlinear element. Among nonlineari-

ties we were primarily interested in the hard-limiter, which is known to be very effective against

impulsive disturbances in single-user communication problems. In particular, we compared the

, . , , ',.', v.,-]v 3.,X' .% ,''.'. ,..'..'c /.';.' ::.', ,*
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performance of the conventional linear correlator with that of the hard-limiter correlation receiver in

impulsive and multi-user noises. Then we briefly examined the soft-limiting correlation receiver in a

similar environment.

To examine the performance of linear correlation receivers we computed the average bit-error

probability when multi-user and impulsive channel noises are interfering with a binary PSK signal.

In all of our examples, a maximal-length spreading sequence of period N was assigned to each of the

K users to reduce multiple-access interference. The principal conclusion here was that, with a fixed

SNR, the linear correlation receiver does not perform as well as the Gaussian model predicts when

the non-Gaussian noise has an impulsive nature ( heavy-tailed distribution ). In one case, in which

the Gaussian assumption was violated in favor of an 6-mixture assumption, the resulting degradation

in performance was equivalent to that caused by subscribing four additional users to a Gaussian chan-

nel with same SNR.

Motivated by the poor performance of the linear correlation against impulsive noise channels,

we studied the performance of the hard-limiting correlation receiver under the same conditions as

those for which the linear correlation receiver was analyzed. We first showed that hard-limiting

correlation receivers offer significant improvement in performance over the linear correlation receiver

in single-user impulsive channels. Then the combined effects of impulsive noise and multi-user

interference on the performance of a hard-limiting correlation receiver were compared with those on

the performance of a linear correlation receiver. These results indicated significant improvement in

performance by using hard-limiting correlation receivers in place of linear correlators for more impul-

sive noise channels. Moreover, the improvement became more visible as the length of the signature

sequences used by the channel subscribers increased. We also noted that, unlike the linear correlation

receiver, degradation in performance due to the interfering user was no longer uniform in a range of

signal-to-noise values. In fact, as the SNR increases, the hard-limiter apparently is not as effective in

p aig
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In the analysis of hard-limiting correlation receivers we observed that in examples of

moderately impulsive channel noise with small N and K=2 the conventional linear receiver outper-

forms the hard-limiting correlation receiver. Comparing the two receivers, the linear correlator is

more effective against multiple-access interference, whereas the hard-limiting correlation receiver is

more effective against impulsive channel noise. We combined these desirable features and intro-

duced soft-limiting correlation receivers as an alternative for moderately impulsive channels. Due to

the complexity of analyzing the performance of soft-limiting correlation receivers, we could only

compare the exact error probabilities of linear and hard-limiting correlation receivers with the esti-

mates of the e-ror probability of the soft-limiting correlation receiver. For the Laplacian channel

example the approximate performance, which is asymptotically exact as N -- +00, indicates consider-

able improvement in performance by using the soft-limiting correlation receiver in place of both the

linear and hard-limiting correlation receivers. Although these findings are not conclusive, they do

provide a trend for further investigation on the subject.

To gain further insight into nonlinear correlation receivers and explore the fundamental limita-

tion of these systems, we carried out an asymptotic analysis for linear and general nonlinear

DS/SSMA correlation receivers. In this asymptotic analysis the length of the data period, the energy

per data bit for a user, the noise power, and in turn the signal-to-noise ratio are kept constant. How-

ever, the length of the signature sequences used per data bit was allowed to grow without bound, and

in turn the sampling period decreased to zero. Assuming some regularities on the nonlinearity, condi-

tions were obtained under which a multi-user system achieves asymptotic single-user error probabili-

ties in an infinite-user environment. Similar ideal asymptotic conditions on the MA signals were

obtained when linear receivers were considered. An expression was also given for the asymptotic

error probabiiity of inear and nonlinear correlation receivers in Gaussian and non-Gaussian channels.

This limiting behavior of the probability of error reinforced the idea that the performance of the

. multi-user communication system operating in impulsive environments :an be irnproved signficantly

by taking into account the statistical characteristics of the channel noise.

, -~ . - ..
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APPENDIX A

NON-GAUSSIAN CHANNEL MODELS

In this Appendix we introduce some classes of first-order probability distribution functions that

are widely used in modeling channel noise sources. These classes complement the e-mixture and

Laplacian noise models discussed in Chapter 2.

Among the physical models for impulsive noise, some of the most general are those developed

by Middleton [19-20]. Canonical, statistical-physical models have been constructed and experimen-

tally verified for a broad class of impulsive ( mostly man-made ) electromagnetic interference. In

addition to avoiding the limitations of empirical models, these models also remain tractable for most

analyses. Of particula:r interest to us are density functions in the Middleton Class A impulsive noise

model which can be written as

f,(x) = KmN(O;C), (A.1)
M=O

where N(0;C ) denotes the zero mean Gaussian probability density function with variance Cm2.Here

i e-AAm
Km m and C2 = 02A[ M+r] where A, r and 9,2A are three parameters of the model. The

m! M A

variance of a random variable with density given by (A. 1) is

a2  KmC 2 2A(I+l')• (A.2)

With the variance of the random variable fixed, there are only two free parameters, usually taken to

be A and 1. The first free parameter, A, is called the impulsive index and measures the amount of

temporal overlap among the waveforms of the interfering signals (inside the receiver). A large value
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of A means considerable overlap with a corresponding approach to Gaussianity, while a small value

of A means highly impulsive or structured interference. The other variable, r, is given by the ratio

of the power in the Gaussian portion of the interference to the power in the impulsive component.

Middleton has shown that, by adjusting the parameters A and r', the density given in (A. 1) can be

made to fit a great variety of non-Gaussian densities quite well [19-20], and [36-37]. The parameters

A and r are physically motivated, unlike the parameters in the £-mixture model, and can be

estimated from physical measurements. ( This problem has been studied recently by Zabin [461. )

Vastola [40] has shown that in many cases the infinite series in (A.1) can be closely approximated by

only two terms. This yields a way of choosing parameters of the mixture directly from the physically

motivated parameters of the Class A model. For the Gaussian-Gaussian mixtur., this relation stands

as

1+ AV (A.3)

Ar',

and

K_ A (A4)
Ko+K 1  I+A

Therefore, when an e-mixture distribution is used to model narrow band non-Gaussian noise, e and 91

can be obtained from (A.3) and (A.4) knowing that techniques are available for determining A and r.

Among useful empirical models, the Cauchy density function is an example of a very heavy-

tailed distribution. The density is given by

c/n (A.5)
f()-C2+X 2 ,

'~'~'
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where c is a parameter controlling the scale. Due to its extremely heavy tails, the Cauchy density

function has infinite variance. However, by carefully choosing the parameter c, it can still be used as

a model for comparison with random variables of finite variance. This is done by equating the area

under a truncated Cauchy density function with that of a Gaussian density with the desired variance.

That is, we can use the relationship

be

1-2Q(b) =f - dx, (A.6)

X
2

where Q(b) - dx is one minus the standard error function, and o2 is the noise variance

to be matched. From this relationship c is obtained as

_ ba
ba (A.7)tan[ -- Q(b)]

2r

3 (In the sequel we will choose b=l in this context. ) The Cauchy density function with parameter c

given in (A.7) enables us to realize limitations in performance of the linear DS/SSMA systems in the

presence of noise sources exhibiting extremely large impulses.

The last class of distributions to be considered here is the generalized Gaussian class. In [161,

density estimates for non-Gaussian processes in the ocean acoustic environment have been shown to

agree closely with generalized Gaussian density for different exponential decay rates. This class has

a symmetric unimodal density obtained by generalizing the Gaussian density to obtain a variable rate

of exponential decay and is given by (see [3] and [221)
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f'(x)- exp{ J.L)CI,
2r(-1)A(c) A(c) (A.8)

C

where A(c) [(2r(I/c) 11/2, a2 is the variance, r(.) is the gamma function, and c is a positive param-
r(3/c)

eter controlling the rate of decay. Note that for c-2 this density reduces to the Gaussian density,

whereas for c-i it becomes the Laplacian ( double-exponential ) density.

The classes of density functions introduced above cover a wide range of practical models for

non-Gaussian sources, and all are of interest in practice. We analyze the performance of the linear

correlation receiver in these non-Gaussian channels in Appendix B.

i
I

"Si
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APPENDIX B

PERFORMANCE ANALYSIS OF THE LINEAR CORRELATION RECEIVER

IN NON-GAUSSIAN NOISE

In Chapter 3, we evaluated the single-user average bit-error probability of the linear correlation

receiver in e-mixture and Laplacian noise channels. Then in Chapter 4, we added multi-user noise to

the scenario and examined the performance of the linear receiver in these multi-user impulsive chan-

nels. In Appendix A, we introduced some alternative models of non-Gaussian channels that were

also of interest in practice. In this Appendix, we examine the degradation in performance of the

linear correlation receiver due to the channel noise modeled as Middleton Class A, Cauchy, and gen-

eralized Gaussian noise in single and multi-user cases by computing the exact average bit-error pro- T.

bability.

Recall from Chapter 3 that when K - 1 the average error probability for the linear receiver is

obtained via

2 = 2-1rJu'(sin u ) 0 2(u) du, (B.1)
0

where 0 2(u) 21 [{eiuo '} is the characteristic function of the sum of the N independent identically

No
distributed random variables, 71,T11 .... IlN-1 with zero means and variances The error pro-

2NEb()"

bability for the Middleton Class A is computed by first finding an expression for the characteristic

function 0)2 ( u). The characteristic function for the Middleton Class A can be written as

.'I

[mo Km. , (B.2) . .

0.~?
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where Km's and Cm's are defined in Appendix A. The single-user average error probability is

obtained by substituting (B.2) into (B.1). The expression for the 0 2 (u) is more complicated in the

generalized Gaussian example. In this case the probability density function given in (A.8), which has

an exponential form, is expanded and then used to compute the characteristic function. The final

expression is as follows

r 2m+l
4D2(u) =UA(c) 2m • (B.3)

where A(c) is defined in (A.8), r(.) is the gamma function, and c is a positive parameter controlling

the rate of decay. The error is then obtained by substituting (B.3) into (B. 1).

For the Cauchy example, the characteristic function is as

(Dz(u) = e'NIuI (B.4)

where c is obtained from (A.7). Again, substituting (B.4) into (B.1) yields the error probability for

linear correlators in Cauchy noise, which can be written in a closed form as

PC-I- -'tan-i' (1/cN). (B.5)

A I
To demonstrate the single-user performance of linear correlation receivers, Figures B.1 and B.2

have been generated for these non-Gaussian channel examples. Comparing the non-Gaussian channel

examples with the Gaussian one, these curves indicate a degradation in performance for all impulsive

noise cases over the entire range of interest of signal-to-noise ratios, with fairly large degradation in

some cases. This is not surprising since the linear correlation receiver is designed to operate against

% I IH
-'. ,-A
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Middleton Class A

10-3 A=0.35) r'= 0.0005

Pe

2 510 14
SNR

FP-8898

Figure B. I. Single-user error probaility for the linear DS/SSMA correlation receiver in Gaussian,
Cauchy, and Oidleton Class A channels, N- 31.
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0.1

10-2

c=1
10-4 c=2

C=4/ C=3I

215 051

SNR
FP-ee97j

Figure B.2. Single-user error probabilitY for the linear DS/SSMA correlation receiver in generalized
Gaussian channels, N-3 1.

all 1 tI
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the Gaussian noise channel. Similar to our conclusion in Chapter 3 for the e-mixture and Laplacian

examples, these figures show that the impulsive character of the channel noise can drastically degrade

the performance of conventional linear receivers.

Next we examine the performance of the linear receiver in the direct-sequence multi-user

environment over Middleton Class A, generalized Gaussian, Cauchy noise channels. Recall from

Chapter 4, that the multi-user bit-error probability can be written as

2 - 1 (sin u) 02 (u) du + i 1Ju1 (sin u) 02 (u) [l--0(u) du, (B.6)
0 0

where 02 (u) _ [E { eiu"o I ]N as in (B.1) and 0 1 (u) 4 E{ei'W'} with multiple-access interference I1

given in (4.5). Since P. is written conveniently in terms of characteristic functions, contributions of

the MA interference and noise are distinguishable. Note that the left part of the expression for the

multi-user error probability has already been evaluated for the non-Gaussian channels under study

here. In particular, the characteristic functions 02 (u) are given in (B.2), (B.3), and (B.4) for Middle-

ton Class A, generalized Gaussian, and Cauchy channel examples, respectively. To evaluate the error

probability via (B.6) we use the characteristic function of the multiple-access interference 01 (u)

given in (4.14). Therefore, the average bit-error probability of the linear correlation receiver for these

non-Gaussian channels is obtained by substituting the corresponding expression for 02 and (4.14)

into (B.6). Tables B. 1 contains the two-user error probability for the Middleton Class A and Cauchy

channel examples with SNR = 8 dB and N = 31. Corresponding results for the generalized Gaussian

channel example are depicted in Table B.2. For simplicity, the examples are carried through under

the assumption that all users have the same power. All of these results are obtained with fixed

signal-to-noise ratio, thereby showing the effects of the noise density shape on performance.

The principal conclusion here is that the linear receiver does not perform as well as the Gaus-

sian model predicts when the non-Gaussian noise has an impulsive nature ( heavy-tailed ). For %
4.

-- • * . ' " . . • " ' ' ll IT. ' '-
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TABLE B. 1. AVERAGE ERROR PROBABILITY OF LINEAR CORRELA-
TION RECEIVERS IN THE BINARY PSK DS/SSMA SYSTEM ; MIDDLE-
TON CLASS A, CAUCHY AND GAUSSIAN CHANNELS, SNR-8.O dB,
N=3 1

DISTRIBUTIONS K P.
MIDDLETON CLASS A

1 4.59 x 10-4

A = 0.000, r- 50.0
2 6.72 X 10-4

1 4.80 x lr

A - 0.35, r~ - 0.0005
2 7.72 x l0r

1 1.04 x le
A-O0. 1, r--. 1 2 1.41 x le

6 4.66 x le 3

1 1.91 X j0'

GAUSSIAN 2 4.16 x l104

___ __ ___ __ __ ___ __ __6 3.48 xIT

1 2.25 x iT1

CAUCHY 2 2.26 x l10'
___ __ ___ __ ___ __ ___ __6 3.30 x ITr' j
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TABL B.2 AVRAGEERRO PRBABIITYOF LINEAR CORRELA-

TION RCIESITHBIAYPKDSISSMA SYSTEM ; GENERAL-

1 2.94x 10-4
1.0 .

___ __ __ __ __ __ __2 5.45 x107

1 1.91 X 1O-4
2.0

2 4.16 x ler

3.01 1.72 x le

2 3.9 xler

1 1.64 x1le
4 .023 

. 2 x 1 7

WI
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comparison we have also shown short-tailed distributions in Table B.2 ( c - 3 and c - 4 ), in which

performance of the linear receiver is better than predicted. However, these short-tailed distributions

do not model impulsive phenomena.

*NO
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